
Potential Risks Arising from the Absence of Signature
Verification in Miniapp Plugins

Yanjie Zhao
Yanjie.Zhao@monash.edu

Monash University
Australia

Yue Zhang
yz899@drexel.edu
Drexel University

USA

Haoyu Wang
haoyuwang@hust.edu.cn

Huazhong University of Science and
Technology

China

ABSTRACT
The advent of mobile super apps has given rise to the miniapp
paradigm, a lightweight application model that operates within a
JavaScript engine hosted by the primary app. Miniapps now have
transformed the app ecosystem, offering easy access, install-less
functionality, and a wide array of service offerings. However, the
integration of plugins, which are functional components added
to miniapps, has introduced potential security concerns. While
the underlying framework strives to ensure data security between
miniapps and their embedded plugins, vulnerabilities may arise
if signature verification is neglected in the plugin’s implementa-
tion. Although Tencent offers developers guidelines for signature
integration, this verification isn’t pre-packaged, potentially leading
less experienced developers to skip it when incorporating plugins,
risking security. Specifically, the lack of signature verification in
miniapp plugins can create a potential threat, enabling attackers to
manipulate transactions and undermine the integrity of theminiapp.
This paper explores the communication mechanisms of miniapps,
the function of plugins, and the vital role of signature verification in
enhancing the security of transactions and data within this rapidly
evolving ecosystem.

CCS CONCEPTS
• Security and privacy → Software security engineering.

KEYWORDS
Mini-programs, miniapps, mobile super apps, mobile security
ACM Reference Format:
Yanjie Zhao, Yue Zhang, and Haoyu Wang. 2023. Potential Risks Arising
from the Absence of Signature Verification in Miniapp Plugins. In Proceed-
ings of the 2023 ACM Workshop on Secure and Trustworthy Superapps (SaTS
’23), November 26, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3605762.3624433

1 INTRODUCTION
In the ever-evolving landscape of mobile applications, the emer-
gence of super apps like WeChat, Baidu, and TikTok has marked

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SaTS ’23, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0258-7/23/11. . . $15.00
https://doi.org/10.1145/3605762.3624433

a significant shift in how users interact with digital platforms [4].
These platforms, seeking to leverage their vast user base and expand
their functionalities, have introduced the concept of theminiapp [39].
First debuted by WeChat in 2017 [9], miniapps are lightweight, full-
fledged applications that run within a JavaScript engine created or
virtualized by the host app. This innovative approach offers users a
plethora of daily-life services, from ride-hailing to online shopping,
all without the traditional installation process.

The allure of miniapps lies in their ease of development and
distribution. Unlike traditional web apps, which often necessitate
developer-maintained backend servers, miniapps provide a set of en-
capsulated APIs, granting easy access to data and system resources
maintained by the super app [36]. Furthermore, their distribution
extends beyond app stores, leveraging the super app’s social net-
work, thereby making access to a new miniapp as simple as a click.

Integral to the miniapp ecosystem are plugins [6]. Miniapp plug-
ins, as modular and reusable components, are crafted to augment
and diversify miniapp functionalities. Platforms like WeChat sup-
port these plugins, which comprise a blend of APIs, custom compo-
nents, or pages, allowing for seamless integration into miniapps.
Distinct from standalone miniapps, plugins are dependent enti-
ties, requiring a miniapp for operation. This architecture enables
third-party developers to encapsulate specific features or services,
streamlining their integration across various miniapps. Addition-
ally, the inherent design of plugins ensures their code remains
concealed from the host miniapp, preserving intellectual property
and maintaining data security.

Unfortunately, the inception of these plugins, which were pri-
marily conceived to amplify the capabilities of miniapps, has in-
advertently opened the door to a host of security concerns. While
these plugins promise a suite of extended services, they simultane-
ously demand rigorous security protocols to uphold the integrity
of the miniapp and safeguard its vast user base. One particularly
conspicuous concern that has emerged is the potential for security
breaches stemming from the lack of signature verification within
these plugins. To delve into further specifics, it’s worth noting that
while Tencent has furnished developers with guidelines [1] for inte-
grating signature verification, this verification process isn’t readily
available in a pre-packaged form. Consequently, developers with
limited expertise might unintentionally overlook these instructions
and proceed to incorporate plugins into their creations without
incorporating the essential signature verification measures.

The absence of such critical verification may create vulnerabil-
ities, threatening the users’ security and privacy. Attackers, cap-
italizing on these lapses, might exploit the system, orchestrating
maneuvers that lead to undue financial gains. To delve deeper into

59

https://doi.org/10.1145/3605762.3624433
https://doi.org/10.1145/3605762.3624433

SaTS ’23, November 26, 2023, Copenhagen, Denmark Yanjie Zhao, Yue Zhang, & Haoyu Wang

the specifics, bypassing or neglecting this verification process can
expose the system to a myriad of vulnerabilities, granting attackers
the leeway to alter data and manipulate transactions. A tangible
example of this would be the potential compromise of a plugin
with payment functionality. In such a scenario, a miniapp could
be duped into recognizing and validating a payment transaction
that, unbeknownst to it, has been maliciously altered. Imagine a
situation where the miniapp is led to believe a user has executed
a substantial payment, while in actuality, the transaction amount
has been cunningly tampered with by malevolent entities.

Contribution.Our paper endeavors to provide an in-depth analysis
of the miniapp paradigm, the role and functionality of plugins, and
the paramount importance of signature verification in safeguarding
the integrity and security of the miniapp ecosystem.

2 BACKGROUND
2.1 Miniapps vs. Miniapp Plugins

Miniapps.Miniapps [39] are streamlined applications that function
within a host app, offering instant access to various services without
requiring separate installation. They serve as a bridge between full
applications and quick, on-the-go services.

var myPluginInterface = requirePlugin('myPlugin');
myPluginInterface.hello();
var myWorld = myPluginInterface.world;

Listing 1: An example of calling JS APIs from a plugin.

Miniapp Plugins.Miniapp plugins [6] are specialized components
that enhance miniapps by adding specific functionalities or APIs.
They enable developers to efficiently incorporate features like pay-
ment processing or mapping. The integration of these plugins often
involves a verification process to ensure the authenticity and in-
tegrity of the communication between the miniapp and the plugin.
This verification process, typically involving signature checks, is
crucial in maintaining the security and reliability of the system,
especially in scenarios involving sensitive operations.

Table 1: The comparison between miniapps and miniapp
plugins.

Attribute Miniapp Miniapp plugin
Definition Lightweight app Package of APIs
Run Mode Inside host app Within miniapp

Functionality Broad services Specific enhancements
API/Component Access Broad access Limited/specific access

User Interaction Direct interaction Indirect/none
Development Tools WeChat DevTools Similar to Miniapps

Comparison.As detailed in Table 1, miniapps and miniapp plugins
exhibit distinct differences across multiple dimensions.

• Definition: Miniapps are lightweight applications designed
to run inside a host app, offering various services without the
need for separate installations. In contrast, miniapp plugins

are specialized packages, often comprising specific APIs or
components, crafted to augment the functionalities of the
miniapp into which they are integrated. Listing 1 illustrates
this relationship, showing an example of how a JavaScript
API from a plugin named myPlugin can be invoked in a
miniapp. By utilizing the requirePlugin method, developers
can seamlessly integrate the plugin’s functionality, such as a
hellomethod or aworld variable, into the broader application
environment.

• Run Mode:While miniapps operate within a host app, they
maintain a semblance of independence, running their own
set of operations and services. Plugins, however, are in-
herently dependent. They need to be embedded within a
miniapp to function, acting more as extensions than individ-
ual entities.

• Functionality:Miniapps are versatile, offering users a broad
spectrum of services, from shopping to ride-hailing. Plugins
have a narrower focus. They provide specific features or
services, like payment gateways or map integrations, that a
miniapp might need.

• API/Component Access: In WeChat API, there’s a clear
distinction between access permissions for miniapps and plu-
gins. Miniapps have broader access to various APIs, while
plugins have more limited access. Plugins cannot access
some APIs, and they have their own domain name list. Cer-
tain functions not in the "wx" object and specific APIs are
only available on feature pages within plugins. Plugins also
have restrictions on using components like buttons with spe-
cific open types (e.g., “contact”, “getPhoneNumber”, “getUser-
Info”) during development. They cannot use components like
"open-data" for cross-app communication and “web-view” to
access miniapp pages. This limitation can lead to the plugin’s
backend being unaware of the frontend’s status [2, 3, 7].

• User Interaction: Miniapps are designed for direct user
interaction. They are the interfaces that users see, click on,
and engage with. On the contrary, plugins typically operate
in the background. Their code and operations remain largely
invisible to the end-user, silently enhancing the miniapp’s
capabilities.

• Development Tools: Both miniapps and plugins utilize
similar development tools such as WeChat DevTools [5],
but plugins are specifically tailored to enhance miniapps’
functionalities.

2.2 Miniapp-plugin Communication

In the context of utilizing plugins, miniapps have to establish a
communication channel with the plugins to facilitate various func-
tionalities. This channel is vital for the seamless integration of
additional features and services that enhance the user experience.
As illustrated in Figure 1, consider a miniapp engaged in an online
shopping scenario. Here, the miniapp’s backend returns a product
price of 100 units, prompting the miniapp to initiate a payment re-
quest through the plugin ➊, i.e., myPluginInterface.pay(100), asking
the user to pay the specified amount. To complete this payment
process, the miniapp leverages a plugin designed to handle trans-
actions. This plugin acts as a mediator, processing the payment

60

Potential Risks Arising from the Absence of Signature Verification in Miniapp Plugins SaTS ’23, November 26, 2023, Copenhagen, Denmark

Backend FrontendBackend

Miniapp: for online shopping

Backend BackendFrontend

Miniapp plugin: for online payment

Host app

➊ myPluginInterface.pay(100)

➋ paymentSolving.pay(100)

➌ Reply “Payment successful!”

Figure 1: An example of the synergy between miniapps and
plugins in payment scenarios.

request and interacting with the payment gateway ➋. Ideally, once
the consumer finalizes the payment, the plugin communicates a
successful payment message back to the miniapp ➌. Armed with
this confirmation, the miniapp then proceeds to the next steps, such
as shipping the purchased item or handling potential refunds.

This synergy betweenminiapps and plugins not only streamlines
the payment process but also allows for the integration of various
other services, such as location tracking, IoT device controlling [40],
social sharing, or personalized recommendations. The flexibility
and modularity of this system enable developers to create rich,
dynamic experiences without overcomplicating the core miniapp
structure.

3 SECURE SIGNATURE MECHANISM
While plugins offer enhanced functionalities, they also introduce
potential security concerns. Ensuring the integrity and authenticity
of network requests is vital to prevent malicious activities such as
spoofing or tampering. Hence, developers are guided by Tencent [2]
to implement a robust digital signature mechanism. Broadly, this
mechanism can be divided into two primary phases:
(I) Signature Generation.When a plugin sends a network request
via APIs such as wx.request, the request will additionally carry a
signature to verify that the request is sent from a miniapp plugin.
This signature is located in the request header and looks like as
below:

X-WECHAT-HOSTSIGN: {"noncestr":"NONCESTR",
"timestamp":"TIMESTAMP", "signature":
"SIGNATURE"}

↩→

↩→

• NONCESTR: A random string that introduces unpredictabil-
ity into the signature. This ensures that even if the other
parameters remain constant, the signature will differ with
each request, making it resistant to replay attacks.

• TIMESTAMP : A UNIX timestamp that provides a temporal
context to the request. This ensures that requests are time-
bound, adding another layer of security against potential
attacks.

Here, NONCESTR and TIMESTAMP are used to generate SIGNA-
TURE. The algorithm for calculating the signature is:

Backend FrontendBackend

Miniapp

Attacker Backend BackendFrontend

Miniapp plugin

➊ myPluginInterface.pay(100)

➋ myPluginInterface.pay(1)

➌ paymentSolving.pay(1)

➎ Reply “Payment successful!” -> “Payment failed!”

➍ Signature Verification

(1) Sorting Parameters
(2) Concatenation

(3) Hashing

Host app

Figure 2: A protected payment process with signature verifi-
cation.

SIGNATURE = sha1([APPID, NONCESTR, TIMESTAMP,

TOKEN].sort().join(''))↩→

APPID is the AppId (which can be obtained from the referrer
in the request header) of the miniapp where a plugin resides, and
TOKEN is the token of the plugin:

• APPID: This serves as the unique identifier for the miniapp.
It ensures that the request is associated with a specific appli-
cation within the WeChat ecosystem.

• TOKEN : Specific to the plugin, this token acts as a secret
key, ensuring that only legitimate plugins can generate valid
signatures.

(II) Signature Verification. The verification process is a critical
aspect of ensuring the integrity and authenticity of the communi-
cation between miniapps and plugins. Plugin developers can verify
a signature by performing the following steps on their server:

(1) Sorting Parameters. The first step in the verification pro-
cess involves sorting the values ofAPPID,NONCESTR, TIMES-
TAMP, and TOKEN in lexicographical order. This order is
consistent with the sorting order of JavaScript arrays. By
arranging these parameters in a specific sequence, a stan-
dardized format is established, which is essential for the
subsequent verification process.

(2) Concatenation. Once sorted, the four strings are concate-
nated directly. This concatenation forms a unique string that
represents the specific request. The concatenation ensures
that the signature is sensitive to the exact values and order
of the parameters, making it a robust mechanism against
tampering.

(3) Hashing. The concatenated string is then hashed using the
sha1 algorithm. This cryptographic hash function takes the
concatenated string and produces a fixed-size hash value,
referred to as the SIGNATURE. The resulting SIGNATURE
serves as a fingerprint of the original request, encapsulating
the critical information in a form that is difficult to forge. If
any part of the original request is altered, the signature will
change, allowing the server to detect the modification.

As illustrated in Figure 2, once the plugin has undergone the
signature verification process ➍, any tampering with the message

61

SaTS ’23, November 26, 2023, Copenhagen, Denmark Yanjie Zhao, Yue Zhang, & Haoyu Wang

by an attacker ➋ will be detected by the plugin. This detection
leads to the plugin returning a payment failure result ➎, effectively
thwarting the attack. The signature verification process thus plays
a crucial role in maintaining the security of the communication
between miniapps and plugins, providing a robust defense against
spoofing and tampering attacks. By implementing this verification
process, developers can enhance the trustworthiness of their plu-
gins and protect both users and merchants from potential fraud.
This process is particularly crucial in scenarios where sensitive op-
erations such as payments or personal data retrieval are involved.
Without proper verification, an attacker could potentially modify
the request parameters, leading to unauthorized actions or infor-
mation disclosure.

4 SPOOFING ATTACK
As discussed in §3, the significance of signatures in miniapp plugin
security is evident. Yet, developers lacking expertise might inad-
vertently disregard instructions, leading them to integrate plugins
without the crucial signature verification measures. In the absence
of signature verification, this creates a window of opportunity for
malicious users to manipulate messages during the communication
process, consequently enabling spoofing attacks [8].

4.1 Threat Model and Scope

Assumptions. We assume code integrity for the host app and
miniapp’s frontend, and trust in the encrypted communication
between the miniapp and the plugin. The plugin may be untrusted
if lacking signature verification. The spoofing attack can succeed
primarily due to the absence of mandatory signature verification in
the plugin. An attacker canmanipulate the communication between
the miniapp and the plugin, altering the content without detection
if the plugin does not verify the signature.

Scope and Goals. In the context of this comprehensive study, our
primary focus is directed towards the examination of miniapps
that make use of plugins, specifically those that do not incorpo-
rate mandatory signature verification processes. This particular
aspect of our investigation holds substantial significance, partic-
ularly within environments where these plugins are developed
by external third parties. It is crucial to highlight that in such
scenarios, there often exists a notable absence of enforced stan-
dards or rigorous protocols pertaining to signature verification.
This absence of a standardized verification process can potentially
introduce vulnerabilities and security concerns, which makes it a
subject of paramount importance for our research. By honing in on
this specific issue, we aim to shed light on the potential risks and
security implications associated with the utilization of plugins lack-
ing mandatory signature verification, ultimately contributing to a
deeper understanding of security challenges in these environments.

4.2 Attack Workflow

Overview. The absence of a robust signature verification mech-
anism within miniapp plugins leaves a concerning vulnerability
open to exploitation by malicious actors. In this scenario, attackers
can leverage these vulnerabilities to carry out a range of potentially

Backend FrontendBackend

Miniapp

Attacker Backend BackendFrontend

Miniapp plugin

Host app

Without Signature Verification
➊ myPluginInterface.pay(100)

➋ myPluginInterface.pay(1)

➌ paymentSolving.pay(1)

➍ Reply “Payment successful!”

Figure 3: An example of the spoofing attacks during the pay-
ment process within miniapps.

harmful attacks. One such attack vector involves the manipulation
of timestamps, which can lead to what is known as a "command re-
execute attack." In this type of attack, attackers can tamper with the
timestamp associated with a plugin, effectively tricking it into ac-
cepting fraudulent requests. By exploiting this weakness, they can
force the plugin to re-execute commands, potentially compromising
the integrity and security of the miniapp.

Furthermore, the absence of mandatory signature verification
also opens the door to another insidious threat: data manipulation
attacks. In these attacks, attackers can tamper with the hash values
associated with the data being transmitted between theminiapp and
the plugin. By altering the hash value, they can effectively modify
the content of messages exchanged between the two entities. This
manipulation can lead to data corruption, unauthorized access, or
the injection of malicious payloads, ultimately compromising the
confidentiality and integrity of the information being processed.

To provide a more detailed understanding of these potential
attacks, let’s delve into two illustrative examples, demonstrating
the real-world implications of the vulnerabilities arising from the
lack of signature verification within miniapp plugins.

• DataManipulationAttack. In this scenario, the attacker as-
sumes the role of a malicious user, aiming to manipulate the
data exchanged between the miniapp plugin and its server.
To achieve this, the attacker must modify the content and re-
generate a hash value (referred to as the signature field in
the message). A malicious customer or attacker could exploit
vulnerabilities in the communication between the miniapp
and the plugin as shown in Figure 3. For example, if the
attacker intercepts the message sent from the miniapp to the
plugin ➊ and alters the amount from 100 units to 1 unit ➋,
and the plugin itself lacks signature verification, it may un-
knowingly fall victim to a spoofing attack. The plugin would
then treat the attacker’s message as if it were legitimately
from the miniapp. Remember that in §2.1 we mentioned the
plugin itself cannot read the content of the miniapp’s page,
and therefore relies solely on this communication channel to
interact with the miniapp. Once the consumer completes the
payment of 1 unit ➌, the plugin sends a successful payment
message back to the miniapp ➍. The attacker’s fraudulent
scheme succeeds, resulting in a loss of 99 units for the mer-
chant behind the miniapp. This example underscores the

62

Potential Risks Arising from the Absence of Signature Verification in Miniapp Plugins SaTS ’23, November 26, 2023, Copenhagen, Denmark

importance of robust security measures, such as signature
verification, to prevent spoofing attacks and ensure the in-
tegrity of communications between miniapps and plugins.

• Command Re-execute Attack. A command re-execute
attack involves an attacker intercepting and then resend-
ing a message that was initially transmitted from a miniapp
plugin to its server. The attacker’s aim is to deceive the
server into believing that the retransmitted message is a le-
gitimate and fresh communication from the miniapp plugin.
Because the miniapp plugin’s server fails to validate both
the timestamp and the signature, an attacker gains the
ability to compel the server to re-execute a previously ex-
ecuted command (e.g., shipping a product that is shipped
before). Given the similarity in the attack workflow to the
first scenario, we omitted the details for conciseness.

5 RELATEDWORK

Miniapp and Superapp Security. Existing studies on miniapps
mainly concentrate on their architecture and applications. For in-
stance, Hao et al. [16] explored the system architecture of WeChat
miniapps, while others have investigated their applications in vari-
ous domains such as healthcare [32, 44] and education [12, 19, 28].
Some works have also uncovered vulnerabilities in miniapps and
super apps [24, 27, 30, 31, 37, 38, 41]. Unlike these studies, we are the
first to study the security of miniapp plugins. Our research specif-
ically targets potential risks and mitigation strategies associated
with the absence of mandatory signature verification.

Mobile Security. Research in the mobile security domain is charac-
terized by a sustained focus on identifying and mitigating vulnera-
bilities that could potentially undermine system reliability and data
integrity [15, 18, 21, 22, 26, 29, 42]. A plethora of studies have delved
into various aspects such as application security [17, 23, 43], privacy
preservation [13, 14, 35], and secure communication [25, 33, 34].
Distinct from these studies, our work narrows down to a specialized
investigation in the miniapp domain.

Vulnerability Discovery in Online Services. Extensive efforts
have been made to detect vulnerabilities in online services. These
efforts involve two approaches: analyzing server code (white-box)
and examining network traffic (black-box). Additionally, there’s a
focus on access control issues, primarily concerning authentication
problems like single sign-on security (e.g., [20]), OAuth (e.g., [11]),
and authentication vulnerability scanning (e.g., [10]). In contrast to
previous work, our research centers on the miniapp domain, where
the host app has already completed a portion of the authentica-
tion process, leaving the miniapps to handle the remainder. This
represents a distinct approach compared to traditional efforts.

6 DISCUSSION

Countermeasures. We strongly urge platforms like WeChat to
make signature verification mandatory to enhance the overall se-
curity of the miniapp ecosystem. This enforcement will establish

consistent security protocols, reducing the risk of exploitation re-
sulting from individual developers’ inconsistent implementations.

While it’s true that client-side signature generation is susceptible
to attacks, where attackers can reverse engineer and manipulate
client code to create valid signatures, it’s important to note that we
view this type of attack as unrealistic given our trust in both the
client and the mobile environment. However, to ensure absolute
authenticity, developers can consider using trusted hardware like
TrustZone in addition to signature verification.

Ethical Concern. In this study, we identified potential vulner-
abilities within the miniapp and plugin communication system
but refrained from conducting live experiments due to ethical con-
cerns. In real-world testing scenarios, one could simulate real-world
conditions by sending malevolent network requests to the servers
of miniapp plug-ins. This action could potentially undermine the
privacy and security of stakeholders, resulting in unintended reper-
cussions. Therefore, our research emphasized theoretical analysis
and simulated scenarios, adhering to a responsible approach that
respects the rights and interests of all involved. Our team is collab-
orating closely with Tencent to actively explore viable solutions to
the issue.
Future Work. In future studies, we aim to extend our research
scope to encompass not just miniapp plugins but also ordinary
miniapps to explore the broader landscape of security concerns and
potential countermeasures. This expansion will involve a detailed
analysis of the existing security mechanisms and their effectiveness
in safeguarding user data and ensuring app reliability. Moreover,
while our current work has primarily focused on signature verifi-
cation as a security measure, we acknowledge its limitations and
foresee a comprehensive investigation into alternative security mea-
sures. Drawing from the insights of our current study, we plan to
delve deeper into mutual authentication mechanisms, exploring
the potential role of Public Key Infrastructure (PKI) in enhancing
the security of super-app platforms.

7 CONCLUSION
This paper has explored the intricate communication mechanisms
between miniapps and plugins, shedding light on both the potential
vulnerabilities and the security measures that can be implemented.
A significant part of the security issue stems from the fact that
signature verification is not mandatory but is left to the discretion
of the plugin developers. By delving into an example of spoofing
attacks, we have illustrated how attackers can exploit weaknesses
in the system, and how signature verification can effectively thwart
such attempts. The insights provided in this study underscore the
importance of rigorous and standardized security protocols in the
rapidly evolving miniapp ecosystem.

ACKNOWLEDGEMENTS
We thank shepherd Juanru Li as well as the anonymous reviewers
for their insightful comments. This work was supported in part by
the National Key R&D Program of China (2021YFB2701000), the
National Natural Science Foundation of China (grant No.62072046),
the Knowledge Innovation Program of Wuhan-Basic Research, and
HUST CSE-HongXin Joint Institute for Cyber Security.

63

SaTS ’23, November 26, 2023, Copenhagen, Denmark Yanjie Zhao, Yue Zhang, & Haoyu Wang

REFERENCES
[1] [n. d.]. Feature Page of Payment | Weixin public doc — develop-

ers.weixin.qq.com. https://developers.weixin.qq.com/miniprogram/en/dev/
framework/plugin/functional-pages/request-payment.html. [Accessed 10-08-
2023].

[2] [n. d.]. Feature Page of Plug-Ins | Weixin public doc — develop-
ers.weixin.qq.com. https://developers.weixin.qq.com/miniprogram/en/dev/
framework/plugin/functional-pages.html. [Accessed 10-08-2023].

[3] [n. d.]. Limitation on Calling APIs via Plug-Ins | Weixin public doc — devel-
opers.weixin.qq.com. https://developers.weixin.qq.com/miniprogram/en/dev/
framework/plugin/api-limit.html. [Accessed 10-08-2023].

[4] [n. d.]. Mobile payments, mini-programs are key features of Chinese super
apps — spglobal.com. https://www.spglobal.com/marketintelligence/en/news-
insights/research/mobile-payments-mini-programs-are-key-features-of-
chinese-super-apps. [Accessed 10-08-2023].

[5] [n. d.]. Overview | Weixin public doc — developers.weixin.qq.com. https:
//developers.weixin.qq.com/miniprogram/en/dev/devtools/devtools.html. [Ac-
cessed 10-08-2023].

[6] [n. d.]. Plug-in | Weixin public doc — developers.weixin.qq.com. https://
developers.weixin.qq.com/miniprogram/en/dev/framework/plugin/. [Accessed
10-08-2023].

[7] [n. d.]. Restrictions on the Use of Components by Plug-Ins | Weixin public doc —
developers.weixin.qq.com. https://developers.weixin.qq.com/miniprogram/en/
dev/framework/plugin/component-limit.html. [Accessed 10-08-2023].

[8] [n. d.]. Spoofing attack - Wikipedia — en.wikipedia.org. https://en.wikipedia.org/
wiki/Spoofing_attack. [Accessed 10-08-2023].

[9] [n. d.]. Weixin public doc — developers.weixin.qq.com. https://developers.weixin.
qq.com/miniprogram/en/dev/framework/. [Accessed 10-08-2023].

[10] Guangdong Bai, Jike Lei, GuozhuMeng, Sai Sathyanarayan Venkatraman, Prateek
Saxena, Jun Sun, Yang Liu, and Jin Song Dong. 2013. Authscan: Automatic
extraction of web authentication protocols from implementations. (2013).

[11] Eric Y Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick
Tague. 2014. Oauth demystified for mobile application developers. In Proceedings
of the 2014 ACM SIGSAC conference on computer and communications security.
892–903.

[12] Xin Chen, Xi Zhou, Huan Li, Jinlan Li, and Hua Jiang. 2020. The value of WeChat
as a source of information on the COVID-19 in China. Preprint]. Bull World
Health Organ 30 (2020).

[13] Zikan Dong, Liu Wang, Hao Xie, Guoai Xu, and Haoyu Wang. 2022. Privacy
Analysis of Period Tracking Mobile Apps in the Post-Roe v. Wade Era. In Pro-
ceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. 1–6.

[14] Jie Gu, Yunjie Calvin Xu, Heng Xu, Cheng Zhang, and Hong Ling. 2017. Privacy
concerns for mobile app download: An elaboration likelihood model perspective.
Decision Support Systems 94 (2017), 19–28.

[15] Xing Han, Yuheng Zhang, Xue Zhang, Zeyuan Chen, Mingzhe Wang, Yiwei
Zhang, Siqi Ma, Yu Yu, Elisa Bertino, and Juanru Li. 2023. Medusa Attack:
Exploring Security Hazards of {In-App}{QR} Code Scanning. In 32nd USENIX
Security Symposium (USENIX Security 23). 4607–4624.

[16] Lei Hao, Fucheng Wan, Ning Ma, and Yicheng Wang. 2018. Analysis of the
development of WeChat mini program. In Journal of Physics: Conference Series,
Vol. 1087. IOP Publishing, 062040.

[17] Yiling He, Yiping Li, Lei Wu, Ziqi Yang, Kui Ren, and Zhan Qin. 2023. MsDroid:
Identifying Malicious Snippets for Android Malware Detection. IEEE Transactions
on Dependable and Secure Computing 20, 3 (2023), 2025–2039. https://doi.org/10.
1109/TDSC.2022.3168285

[18] Pingfan Kong, Li Li, Jun Gao, Timothée Riom, Yanjie Zhao, Tegawendé F Bis-
syandé, and Jacques Klein. 2021. ANCHOR: locating android framework-specific
crashing faults. Automated Software Engineering 28 (2021), 1–31.

[19] Qinzhen Liang and Chengyang Chang. 2019. Construction of teaching model
based on WeChat Mini-Program. International Journal of Science 16, 1 (2019),
54–59.

[20] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang. 2008. Automatic
protocol format reverse engineering through context-awaremonitored execution..
In NDSS, Vol. 8. 1–15.

[21] Pei Liu, Yanjie Zhao, Haipeng Cai, Mattia Fazzini, John Grundy, and Li Li. 2022.
Automatically Detecting API-induced Compatibility Issues in Android Apps: A
Comparative Analysis (Replicability Studies). In The ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2022).

[22] Pei Liu, Yanjie Zhao, Mattia Fazzini, Haipeng Cai, John Grundy, and Li Li. 2023.
Automatically Detecting Incompatible Android APIs. ACM Transactions on
Software Engineering and Methodology (2023). https://doi.org/10.1145/3624737

[23] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. 2022. Explainable
ai for android malware detection: Towards understanding why the models per-
form so well?. In 2022 IEEE 33rd International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 169–180.

[24] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFengWang, and
Xueqiang Wang. 2020. Demystifying resource management risks in emerging
mobile app-in-app ecosystems. In Proceedings of the 2020 ACM SIGSAC conference
on computer and communications Security. 569–585.

[25] Siqi Ma, Juanru Li, Hyoungshick Kim, Elisa Bertino, Surya Nepal, Diethelm Ostry,
and Cong Sun. 2021. Fine with “1234”? An analysis of SMS one-Time password
randomness in android apps. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 1671–1682.

[26] Siqi Ma, Juanru Li, Surya Nepal, Diethelm Ostry, David Lo, Sanjay Kumar Jha,
Robert H Deng, and Elisa Bertino. 2021. Orchestration or automation: authen-
tication flaw detection in android apps. IEEE Transactions on Dependable and
Secure Computing 19, 4 (2021), 2165–2178.

[27] Meng Shi, Liu Wang, Shenao Wang, Kailong Wang, Xusheng Xiao, Guangdong
Bai, and Haoyu Wang. 2023. WeMinT: Tainting Sensitive Data Leaks in WeChat
Mini-Programs. In ASE.

[28] Yiling Sui, Tian Wang, and Xiaochun Wang. 2020. The impact of WeChat app-
based education and rehabilitation program on anxiety, depression, quality of
life, loss of follow-up and survival in non-small cell lung cancer patients who
underwent surgical resection. European Journal of Oncology Nursing 45 (2020),
101707.

[29] Xiaoyu Sun, Xiao Chen, Yanjie Zhao, Pei Liu, John Grundy, and Li Li. 2022.
Mining android api usage to generate unit test cases for pinpointing compatibility
issues. In Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering. 1–13.

[30] ChaoWang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin. [n. d.]. TAINT-
MINI: Detecting Flow of Sensitive Data in Mini-Programs with Static Taint Anal-
ysis. ([n. d.]).

[31] Chao Wang, Yue Zhang, and Zhiqiang Lin. [n. d.]. Uncovering and Exploiting
Hidden APIs in Mobile Super Apps. https://doi.org/10.48550/arXiv.2306.08134
arXiv:2306.08134 [cs]

[32] Feilong Wang, Lily Dongxia Xiao, Kaifa Wang, Min Li, and Yanni Yang. 2017.
Evaluation of a WeChat-based dementia-specific training program for nurses in
primary care settings: A randomized controlled trial. Applied Nursing Research
38 (2017), 51–59.

[33] Kailong Wang, Junzhe Zhang, Guangdong Bai, Ryan Ko, and Jin Song Dong.
2021. It’s Not Just the Site, It’s the Contents: Intra-domain Fingerprinting Social
Media Websites Through CDN Bursts. In 30th The Web Conference (WWW).
https://doi.org/10.1109/ICECCS2018.2018.00011

[34] Kailong Wang, Yuwei Zheng, Qing Zhang, Guangdong Bai, Qin Mingchuang,
Donghui Zhang, and Jin Song Dong. Accepted by MobiCom 2022. Assessing
Certificate Validation User Interfaces of WPA Supplicants.

[35] Maria K Wolters, Shuobing Li, Haoyu Wang, Xinyu Yang, and Yao Guo. 2020.
Does the Presence of Privacy Relevant Information Affect App Market Choice?.
In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–7.

[36] Yuqing Yang, Chao Wang, Yue Zhang, and Zhiqiang Lin. [n. d.]. SoK: Decoding
the Super App Enigma: The Security Mechanisms, Threats, and Trade-offs in
OS-alike Apps. arXiv:2306.07495 [cs] http://arxiv.org/abs/2306.07495

[37] Yuqing Yang, Yue Zhang, and Zhiqiang Lin. [n. d.]. Cross Miniapp Request
Forgery: Root Causes, Attacks, and Vulnerability Detection. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security
(Los Angeles CA USA, 2022-11-07). ACM, 3079–3092. https://doi.org/10.1145/
3548606.3560597

[38] Lei Zhang, Zhibo Zhang, Ancong Liu, Yinzhi Cao, Xiaohan Zhang, Yanjun Chen,
Yuan Zhang, Guangliang Yang, and Min Yang. 2022. Identity confusion in
{WebView-based} mobile app-in-app ecosystems. In 31st USENIX Security Sym-
posium (USENIX Security 22). 1597–1613.

[39] Yue Zhang, Bayan Turkistani, Allen Yuqing Yang, Chaoshun Zuo, and Zhiqiang
Lin. [n. d.]. A Measurement Study of Wechat Mini-Apps. 5, 2 ([n. d.]), 1–25.
https://doi.org/10.1145/3460081

[40] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen Fu. 2020.
Breaking secure pairing of bluetooth low energy using downgrade attacks. In
29th USENIX Security Symposium (USENIX Security 20). 37–54.

[41] Yue Zhang, Yuqing Yang, and Zhiqiang Lin. [n. d.]. Don’t Leak Your Keys: Un-
derstanding, Measuring, and Exploiting the AppSecret Leaks in Mini-Programs.
https://doi.org/10.48550/arXiv.2306.08151 arXiv:2306.08151 [cs]

[42] Yanjie Zhao, Li Li, Kui Liu, and John Grundy. 2022. Towards Automatically Re-
pairing Compatibility Issues in Published Android Apps. In The 44th International
Conference on Software Engineering (ICSE 2022).

[43] Yanjie Zhao, Li Li, Haoyu Wang, Haipeng Cai, Tegawendé F Bissyandé, Jacques
Klein, and John Grundy. 2021. On the impact of sample duplication in machine-
learning-based android malware detection. ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 30, 3 (2021), 1–38.

[44] Kaina Zhou, Wen Wang, Wenqian Zhao, Lulu Li, Mengyue Zhang, Pingli Guo,
Can Zhou, Minjie Li, Jinghua An, Jin Li, et al. 2020. Benefits of a WeChat-based
multimodal nursing program on early rehabilitation in postoperative women
with breast cancer: a clinical randomized controlled trial. International journal of
nursing studies 106 (2020), 103565.

64

https://developers.weixin.qq.com/miniprogram/en/dev/framework/plugin/functional-pages/request-payment.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/plugin/functional-pages/request-payment.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/plugin/functional-pages.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/plugin/functional-pages.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/plugin/api-limit.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/plugin/api-limit.html
https://www.spglobal.com/marketintelligence/en/news-insights/research/mobile-payments-mini-programs-are-key-features-of-chinese-super-apps
https://www.spglobal.com/marketintelligence/en/news-insights/research/mobile-payments-mini-programs-are-key-features-of-chinese-super-apps
https://www.spglobal.com/marketintelligence/en/news-insights/research/mobile-payments-mini-programs-are-key-features-of-chinese-super-apps
https://developers.weixin.qq.com/miniprogram/en/dev/devtools/devtools.html
https://developers.weixin.qq.com/miniprogram/en/dev/devtools/devtools.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/plugin/
https://developers.weixin.qq.com/miniprogram/en/dev/framework/plugin/
https://developers.weixin.qq.com/miniprogram/en/dev/framework/plugin/component-limit.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/plugin/component-limit.html
https://en.wikipedia.org/wiki/Spoofing_attack
https://en.wikipedia.org/wiki/Spoofing_attack
https://developers.weixin.qq.com/miniprogram/en/dev/framework/
https://developers.weixin.qq.com/miniprogram/en/dev/framework/
https://doi.org/10.1109/TDSC.2022.3168285
https://doi.org/10.1109/TDSC.2022.3168285
https://doi.org/10.1145/3624737
https://doi.org/10.48550/arXiv.2306.08134
https://arxiv.org/abs/2306.08134 [cs]
https://doi.org/10.1109/ICECCS2018.2018.00011
https://arxiv.org/abs/2306.07495 [cs]
http://arxiv.org/abs/2306.07495
https://doi.org/10.1145/3548606.3560597
https://doi.org/10.1145/3548606.3560597
https://doi.org/10.1145/3460081
https://doi.org/10.48550/arXiv.2306.08151
https://arxiv.org/abs/2306.08151 [cs]

	Abstract
	1 Introduction
	2 Background
	2.1 Miniapps vs. Miniapp Plugins
	2.2 Miniapp-plugin Communication

	3 Secure Signature Mechanism
	4 Spoofing Attack
	4.1 Threat Model and Scope
	4.2 Attack Workflow

	5 Related Work
	6 Discussion
	7 Conclusion
	References

