
MiniTaintDev: Unveiling Mini-App Vulnerabilities through
Dynamic Taint Analysis

Jianjia Yu
Johns Hopkins University

Baltimore, MD, USA
jyu122@jhu.edu

Zifeng Kang
Johns Hopkins University

Baltimore, MD, USA
zkang7@jhu.edu

Yinzhi Cao
Johns Hopkins University

Baltimore, MD, USA
yinzhi.cao@jhu.edu

ABSTRACT

The security and privacy issues of mini-apps, which are lightweight
apps that run inside host apps such as WeChat, have drawn the
interest of researchers recently. We propose MiniTaintDev, a dy-
namic taint analysis tool for mini-app vulnerability detection, fo-
cusing on the detection of data leakage and sensitive API execution.
We show MiniTaintDev with proof-of-concept attacks and some
preliminary results in the work-in-progress (WIP) paper.

CCS CONCEPTS

• Security and privacy → Web application security.

KEYWORDS

Mobile security; Mini-app security; Taint analysis

ACM Reference Format:

Jianjia Yu, Zifeng Kang, and Yinzhi Cao. 2023.MiniTaintDev: Unveiling
Mini-App Vulnerabilities through Dynamic Taint Analysis. In Proceedings
of the 2023 ACM Workshop on Secure and Trustworthy Superapps (SaTS
’23), November 26, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3605762.3624434

1 INTRODUCTION

Mini-apps are lightweight apps that rely on host applications such
asWeChat to provide users with various functionalities and features
without leaving the host app. As one of the most popular social
media applications worldwide, WeChat has 1.671 billion monthly
active users in 2023 [2], with 928 million monthly active users of
its mini-apps [3].

WeChat mini-apps leverage web technologies like HTML, CCS,
and JavaScript. They utilize JavaScript engines such as V8 or JS-
Core for JavaScript interpretation andWebView to render the pages.
WeChat offers a library of mini-app APIs [7] and an application
for mini-app development, called Weixin DevTools [5]. Weixin De-
vTools uses NW.js [4] as the JavaScript engine, which combines
Chromium and Node.js for developing cross-platform applications
using JavaScript. Although WeChat mini-apps offer a variety of
advanced features and have a large market share [9], they face secu-
rity and privacy vulnerabilities such as data leakage and sensitive
API execution [10].

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

SaTS ’23, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0258-7/23/11.
https://doi.org/10.1145/3605762.3624434

Researchers have been working on security and privacy issues
of mini-apps with both static and dynamic approaches. Zhang et
al. [22] conduct a thorough measurement of WeChat mini-apps re-
garding security and privacy issues. They also implement an open-
source tool for the crawling of WeChat mini-apps. Taintmini [19]
uses static analysis to analyze the data flow of sensitive data and to
detect privacy-sensitive data leaks and privacy policy violations. In
terms of dynamic approaches, WeJalangi [15] rewrites the read and
write operations in JavaScript but it suffers from high overhead.
Overall, there has not yet been an efficient dynamic taint analy-
sis engine for the detection of vulnerabilities in mini-apps. The
reasons are mainly threefold: First, the host apps usually use their
close-sourced customized JavaScript engines orWebView renderers.
Such a feature brings incompatibility issues and runtime errors,
increasing the difficulty of implementing a third-party vulnerability
detection system. Second, the analysis engine is required to han-
dle complicated cases of JavaScript executions in mini-apps, e.g.,
asynchronous executions, communications between mini-apps, and
chained mini-app redirection. The engine should correctly propa-
gate the taint before it reaches the sink function in those cases for
the completeness of the analysis. Third, it is non-trivial to gener-
ate the correct inputs as the practical exploits to the mini-app for
vulnerability validation, and thus severe consequences, e.g., sen-
sitive data leakage and account takeover, could be unveiled and
underestimated.

In this paper, we design, implement, and evaluate a dynamic
taint analysis engine for mini-apps,MiniTaintDev, to efficiently
detect vulnerabilities in WeChat mini-apps.MiniTaintDev is de-
signed to tackle the three challenges mentioned above and thus fill
in the research gaps. First,MiniTaintDev is built on Weixin Dev-
tools and it runs across different platforms. Second,MiniTaintDev
adds instrumentation on the mini-app API level to handle all of
the complicated cases, e.g., rewriting wx.navigateToProgram and
wx.navigateFromProgram to model the inter-mini-app communi-
cations. Third,MiniTaintDev further generates input/exploits to
trigger vulnerabilities.

2 BACKGROUND

2.1 WeChat Mini-apps

Framework. The framework of a mini-app, its host app, and a
third-party server is shown in Figure 1.

Mini-app consists of two layers: the logic layer and the rendering
layer. The logic layer runs with a JavaScript engine, communicates
with native APIs, processes data, and sends data to the rendering
layer. It also listens to events sent from the rendering layer. The
rendering layer gets the data from the logic layer and renders the
views with the data while sending new events (possibly triggered by

 

41

https://doi.org/10.1145/3605762.3624434
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3605762.3624434


SaTS ’23, November 26, 2023, Copenhagen, Denmark Jianjia Yu, Zifeng Kang, & Yinzhi Cao

Rendering layer

WebView

V8/JSCore

Logic layer

Third- 
party 
server

HTTPS Request

Web Socket

Mini-app

Host app

API

API

Instrumentation

Instrumentation
Native

Instrumentation

Instrumentation

Figure 1: Framework of mini-app with MiniTaintDev

Table 1: Mini-app execution Environments

Platform Logic Layer View Layer

iOS/iPadOS/Mac OS JavaScriptCore WKWebView
Android V8 XWeb[8]
Windows Chromium Core Chromium Core
Weixin DevTools NW.js Chromium Webview

user interaction) to the logic layer. The two layers communicate via
the API, which is a design of WeChat to separate logic processing
and view rendering. The API also converts Native Java methods
to JavaScript code, allowing mini-app developers to utilize Native
methods. Besides, the host app also communicates with a third-
party server. The host app sends data to the third-party server by
HTTPS requests and receives data byWeb Socket. The framework is
common in many super-app-mini-app ecosystems including Alipay,
SnapChat, and Baidu.
Execution Environments. WeChat mini-apps run on several
different platforms, including iOS/iPadOS, Android, Windows PC,
Mac, and Weixin DevTools, as shown in Table 1. The reasons we
chose Weixin DevTools to do the instrumentation are as follows:
First, the JavaScript engine NW.js is open-sourced and Weixin De-
vTools runs across different platforms. Second, according to the
documentation of WeChat miniapp [1], with the access of system
resources from NW.js and JavaScript functionalities from Brower
Object Model (BOM), Weixin DevTools is able to simulate almost
all the functionalities of WeChat mobile apps. For example, Weixin
DevTools utilizes XMLHttpRequest to simulate wx.request and
WebSocket to simulate wx.connectSocket.
WeChat Mini-app Launch Scenes. Mini-apps can be accessed
in plenty of ways, whether it be through a direct search in the
WeChat search box, scanning a QR code, clicking a deep link,
or through the mini-app message cards from WeChat chat ses-
sions [6]. Users can also be redirected from one mini-app to an-
other mini-app by wx.navigateToMiniProgram. Each way of ac-
cess provides information such as the path to the target page and
the query (if any). Upon launch, the mini-app will open the specific
page with a query accordingly. After launch, the mini-app page
can access the query throughApp.onShow(), App.onLaunch(), or
wx.getLaunchOptionsSyn().MiniTaintDev runs dynamic taint
analysis on the mini-app pages with those APIs, tracking the data

1 wx.navigateToMiniProgram ({
2 appId: 'wx123456789 ',
3 path: 'page/index/index?queryName=badQuery ',
4 extraData :{},
5 success(res) {
6 // open succeed
7 }
8 })

Listing 1: An example of passing malicious queries with

wx.navigateToMiniProgram. The part after ‘?’ in path will

become the query, which is the parameter of APIs such

as App.onLaunch() and App.onShow(). The query can also be

accessed through wx.getLaunchOptionsSync().

flow of the query from those APIs to see whether they end up in
some sensitive API sinks such as wx.openBluetoothAdapter.

2.2 Dynamic Taint Analysis

Dynamic taint analysis has been widely used in analyzing program
code, e.g., C/C++ and JavaScript. It leverages concrete inputs to the
program to perform taint tracking and thus enjoys the advantages
of keeping the runtime context during analysis and having a low
false positive rate. There has been a research trend of dynamic
analysis on JavaScript [12, 13, 17, 18] which is to modify a modern
JavaScript engine to conduct taint tracking for the purposes of
defect or vulnerability detection. Our work echoes such research
trends in that we adopt the V8 engine of NW.js for dynamic taint
analysis to tackle challenges in mini-app vulnerability detection.

3 OVERVIEW

In this section, we present the overview of MiniTaintDev with
the threat model and a proof-of-concept attack.

3.1 Threat Model

In our threat model, we consider two parties, a victim and an ad-
versary. The victim is a vulnerable mini-app. The adversary can
either be another mini-app navigating to the victim mini-app with
malicious queries as shown in Listing 1 or any third party that
crafts phishing links and the user is seduced to click the link,
such as: weixin://encoded(pingduoduo-appID,path,malicious-url),
as shown in [21]. Note that we assume the victimmini-app is vulner-
able but not malicious, so the attacker has to make some attempts
to make the attack happen. That is, in both cases, the adversary
needs to pass some malicious queries in.

With the above settings, MiniTaintDev considers two possible
vulnerabilities: First, the malicious query causes the control flow
to go to some APIs which has access to sensitive information, and
the information flows out to third parties through the network. For
example, the attacker passes in a query that leads to the call of
wx.getLocation, then the user’s location is sent to a third party by
HTTPS. Second, the data flow of the malicious query goes to some
sensitive API sinks, causing something to happen unintended. For
example, the attacker passes in a query which will be a parameter
in wx.openBluetoothAdapter, which leads to accessing system
resources.

 

42

weixin://encoded(pingduoduo-appID,path, malicious-url)


MiniTaintDev: Unveiling Mini-App Vulnerabilities through Dynamic Taint Analysis SaTS ’23, November 26, 2023, Copenhagen, Denmark

1 /* pages/somepage?url=badUrl */
2 //app.js
3 App({
4 onLaunch(option){
5 wx.getLocation ({
6 type: 'wgs84 ',
7 success (res) {
8 wx.request ({
9 url: option.query.url ,
10 data: {
11 x: res.latitude ,
12 y: res.longitude
13 },
14 header: {'content -type': 'application/json'},
15 success(res){}
16 })
17 }
18 })
19 }
20 })

Listing 2: A proof-of-concept attack of data leakage. The

exploit launch link (Line 1) and the vulnerable code of one

page of a mini-app (Lines 3-20)

3.2 Proof-of-Concept Attack

In this section, we present a proof-of-concept attack for data leakage,
as shown in Listing 2. The link to launch the mini-app contains
the target page path and the query, which are normally controlled
by the mini-app itself. Normally, the app.js works like this: upon
launch, the onLaunch is called with a parameter option, which
contains launch information such as path, query, and launch scene.
In the function onLaunch, the mini-app calls wx.getLocaion to get
the current location data of themini-app user. If the wx.getLocaion
call succeeds, the location datawill be returned as the parameter res
of the callback function success. Then with a call of wx.request,
the location data, which contains properties such as res.latitude
and res.longitude, will be sent to the URL option.query.url.
wx.request also requires other parameters such as header and
success, which is a callback function.

However, an attacker could craft such a launch link that targets
the same page but with a malicious query, for example, the URL
of a malicious website: badUrl. When the mini-app user is tricked
into clicking on such a crafted link, his or her location information
will be sent to the malicious website, causing a private data leakage.

4 DESIGN

The design of MiniTaintDev consists of three main components:
dynamic taint analysis, input/exploit generation, and result valida-
tion. The dynamic taint analysis includes the instrumentation at two
levels. The first is the JavaScript engine level, which involves the
logic layer and the rendering layer. The second is the mini-app API
level, which serves as the communication layer between the Native
and themini-app. Note that inWeChat mini-apps, WeixinJSBridge
serves as the middle layers for communications between JavaScript
and Native. The JavaScript method WeixinJSBridge is injected
into the logic layer and rendering layers in mini-apps. It mainly
provides four methods for communication: on, which collects the
callbacks of events triggered by user interactions in mini-app ren-
dering layers. invoke, which calls native methods and returns the
results with a callback function. publish, which sends message to
logic layer and subscribe, which listens to event callbacks from

logic layer. Figure 1 shows whereMiniTaintDev adds instrumenta-
tion marked with arrows. The instrumentation on API level mainly
focuses on the WeixinJSBridge function. The instrumentation on
the two levels allows MiniTaintDev to propagate taint from a
WeChat mini-app API such as wx.getLocation or wx.request to
JavaScript and to Native methods.

Regarding the input/exploit generation, MiniTaintDev consid-
ers the sink types and generates the corresponding queries, e.g.,
?receiverUrl=https://attacker.tld for data leakage. In terms
of result validation, Weixin Devtools provides a feature that allows
developers to add customized compilation mode, passing parame-
ters for compiling, including the path to a specific page it will open
after compilation, and the query to that page.MiniTaintDev uti-
lizes this feature to validate the results of the dynamic taint analysis
on Weixin Devtools. We discuss each component in detail in the
following subsections.

4.1 Dynamic Taint Analysis

4.1.1 Taint Representation. Similar to [12],MiniTaintDev presents
object-taints using a one-byte string, in which five bits represent
the source type and the other three bits are unused.MiniTaintDev
stores object-taints in a key-value map.

4.1.2 Sources and Sinks. Based on the two types of vulnerabilities
MiniTaintDev detects, there are two sets of sources and sinks.
First, for data leakage, the sources will be the mini-app APIs with
access to sensitive data. Generally, the sensitive data will be re-
turned as an object. For example, the API wx.getClipboardData().
The API will return with callback functions, success, fail, and
complete. The parameter of success will be the content of the
clipboard. In this case, the sinks are the network APIs, which
makes it possible to leak sensitive data to third parties. Second,
for sensitive API execution, the sources will be the query objects
in APIs such as wx.getLaunchOptionsSync(), App.onLaunch(),
and App.onShow(). The sinks will be the sensitive APIs such as
wx.openBluetoothAdapter.

4.1.3 Taint Propagation. MiniTaintDev propagates taints from
the source object, and sets and propagates object-taints for object
lookups like obj[prop], making sure the property objects of the
query object are also tainted.

4.1.4 Multiple Taints Checking under the Same Context . In some
cases, MiniTaintDev needs to check two taints under the same
function call context to validate the vulnerability. For example, in
Listing 2, MiniTaintDev has to check that both url and data are
tainted and tainted by specific taint sources. Only certain sets of
such taint sources will lead to a vulnerability.

4.2 Input/Exploit Generation

Input/Exploit generation is non-trivial for the detection of the afore-
mentioned vulnerabilities in mini-apps. To make the attack practi-
cal, the adversary will carefully craft the input queries to lead to
further consequences, e.g., system resources access, personal infor-
mation leakage, or account manipulation. To this end, we design
the input/exploit generation module inMiniTaintDev. The mod-
ule is capable of generating specific input queries, i.e., the exploits

 

43



SaTS ’23, November 26, 2023, Copenhagen, Denmark Jianjia Yu, Zifeng Kang, & Yinzhi Cao

leading to corresponding further consequences and validating the
result.

4.3 Result Validation

The main challenge for us to validate the results generated by
MiniTaintDev is that WeChat adopts a review mechanism for
most sensitive mini-app APIs, such as wx.requestPayment and
wx.getLocation. Most of the sensitive APIs require a special appli-
cation and reviewing process to be accessed by the developers of a
specific mini-app, and some even require business authentications,
making it non-trivial for us to obtain access to every mini-app API.
To this end, we validate the potential vulnerabilities discovered by
MiniTaintDev within Weixin Devtools, where some APIs will not
be actually executed but the effect will be similar to the greatest
extent when running on actual mobile devices.

5 IMPLEMENTATION

The Weixin Devtools on which we implemented MiniTaintDev
is version 1.06.2209070 with NW.js 55, running on Linux. We in-
strumented the V8 engine and WebView renderer in NW.js in C++,
with 139 file patches in total. We also instrument on the mini-app
API level, which is written in JavaScript.

6 EVALUATION

Sensitive API List. We use the list of sensitive APIs from [22].
There are 31 in total, including 6 that can access app-specific data
such as user profile or billing address, and 25 that can access system
resources such as Bluetooth, camera, and user location.
Experimental Setups.We run the experiments on a server with
128G memory, 20 Intel(R) Xeon(R) Gold 5118 CPU@ 2.30GHz cores,
running Ubuntu 16.04.7 LTS.
Proof-of-Concept Results. Here we illustrate howMiniTaint-
Dev detects the data leakage vulnerability in Listing 2. Note that
the vulnerability shown in Listing 2 requires two data flows to
make it vulnerable. Namely, the sensitive data flows to a network
request, and the attacker-controlled string flows to the url of that
network request. Therefore, in order to validate the data leakage
vulnerability, there are two sets of source and sink thatMiniTaint-
Dev checks in this example. The first source is option.query
and the corresponding sink is url in wx.request. The second
source is res and the corresponding sink is data in wx.request.
In the beginning, MiniTaintDev taints option object upon call-
ing of onLaunch and taints res upon calling of callback function
success. Note that MiniTaintDev taints object properties dur-
ing object lookups. During execution, when wx.request ac-
quires option.query.url , the taint flows from option.query to
option.query.url and then to url. When wx.request acquires
res.latitude and res.longitude, the taint flows from res to
res.latitude and res.longitude and then to data. Finally,Mini-
TaintDev checks that both data and url are tainted under the
same context of a wx.request call. After detecting the taint flows,
MiniTaintDev generates the query with a url property with a
value of a crafted host. Finally, MiniTaintDev launches the victim
mini-app with Weixin Devtools and validates the vulnerability.

7 DISCUSSION

Extensibility. While our implementation of MiniTaintDev fo-
cuses on the WeChat platform, it is worth noting that MiniTaint-
Dev is highly extensible to other NW.js- or Electron-based mini-app
platforms such as AliPay and Baidu.
Ethics.We respect the security and privacy policies of WeChat and
its mini-app platform during crawling and analysis. MiniTaint-
Dev runs in the development environment provided by the official
WeChat. When generating inputs/exploits, MiniTaintDev applies
dummy strings so that no real-world mini-app is subject to any
possible form of attack or harm. After we complete the evalua-
tion, we will responsibly disclose the discovered vulnerabilities to
corresponding mini-app owners and developers.

8 RELATEDWORK

With the rapid growth of the number of mini-apps and their users,
researchers have been conducting studies on the security and pri-
vacy issues of mini-apps.
Privacy Leakage. Wang et al. [19] and Li et al. [14] both propose
to track the data flow of sensitive data for the detection of sensitive
data leaks in mini-apps. Zhang et al. [23] conducted a measurement
study to detect AppSecrect leaks in mini-apps and the consequences
of this vulnerability such as account hijacking. As a comparison,
MiniTaintDev focuses on the detection of privacy-related vul-
nerabilities comprising sensitive data leakage and sensitive API
execution.
Security Breaches. Beside privacy issues, mini-apps are also sub-
ject to other vulnerabilities that raise security concerns. Yang et
al. [20] introduce cross-mini-app request forgery attack, where
the adversary pretends to be a legitimate mini-app to deceive the
receiver mini-app, and launches subsequent attacks such as privi-
leged data access and information leakage. Beyond the mini-app
itself, the super-app that hosts mini-apps could also be subject to
security breaches, such as resource management risks [16], identity
confusion vulnerabilities [21], and mini-app-to-super-app authenti-
cation bypass [11]. We leave the detection of these security-related
vulnerabilities in MiniTaintDev for future work.

9 CONCLUSION

The mini-app is a relatively novel type of JavaScript application run-
ning in full-fledged host apps, such as WeChat, TikTok, SnapChat,
Alipay, and Baidu. While being lightweight and providing new
features, it brings about security and privacy issues. In this paper,
we propose MiniTaintDev, a dynamic taint analysis engine for
detecting vulnerabilities in mini-apps, such as data leakage and
sensitive API execution. We show a proof-of-concept attack and
some preliminary results, showing the effectiveness of our method.

ACKNOWLEDGEMENT

We thank anonymous reviewers for their helpful comments and
feedback. This work was supported in part by the National Science
Foundation (NSF) under grants CNS-21-54404, CNS-20-46361, and
CNS-1910133, and a Visa Research Award. The views and conclu-
sions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of NSF or Visa.

 

44



MiniTaintDev: Unveiling Mini-App Vulnerabilities through Dynamic Taint Analysis SaTS ’23, November 26, 2023, Copenhagen, Denmark

REFERENCES

[1] [n. d.]. About Mini Programs. https://developers.weixin.qq.com/miniprogram/en/
dev/framework/quickstart/.

[2] [n. d.]. How Many People Use WeChat? User Statistics Trends (Aug 2023) (Source:
https://www.bankmycell.com/blog/number-of-wechat-users/).

[3] [n. d.]. Number of monthly active users of WeChat Mini Programs in China from
September 2020 to May 2023. https://www.statista.com/statistics/1228315/china-
number-of-wechat-mini-program-monthly-active-users/.

[4] [n. d.]. nw.js. https://nwjs.io/.
[5] [n. d.]. Overview: Weixin public doc. Overview | Weixin public doc. (n.d.). https:

//developers.weixin.qq.com/miniprogram/en/dev/devtools/devtools.html.
[6] [n. d.]. Scene value list. https://developers.weixin.qq.com/miniprogram/en/dev/

reference/scene-list.html.
[7] [n. d.]. WeChat mini-app API. https://developers.weixin.qq.com/miniprogram/

en/dev/api/.
[8] [n. d.]. WeChat mini-app execution environments. https://developers.weixin.qq.

com/miniprogram/dev/framework/runtime/env.html.
[9] [n. d.].WeChatMini Apps Risk Data Leaks. https://timebusinessnews.com/wechat-

mini-apps-risk-data-leaks/.
[10] [n. d.]. WeChat mini programs for banking pose ‘significant’ risks of personal data

leakage, says report. https://www.scmp.com/tech/tech-trends/article/3142239/
wechat-mini-programs-banking-pose-significant-risks-personal-data.

[11] Supraja Baskaran, Lianying Zhao, Mohammad Mannan, and Amr Youssef. 2023.
Measuring the Leakage and Exploitability of Authentication Secrets in Super-
apps: The WeChat Case. arXiv preprint arXiv:2307.09317 (2023).

[12] Zifeng Kang, Song Li, and Yinzhi Cao. 2022. Probe the Proto: Measuring Client-
Side Prototype Pollution Vulnerabilities of One Million Real-world Websites. In
29th Annual Network and Distributed System Security Symposium, NDSS 2022, San
Diego, California, USA, April 24-28, 2022. The Internet Society. https://www.ndss-
symposium.org/ndss-paper/auto-draft-207/

[13] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:
large-scale detection of DOM-based XSS. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. 1193–1204.

[14] Wei Li, Borui Yang, Hangyu Ye, Liyao Xiang, Qingxiao Tao, Xinbing Wang, and
Chenghu Zhou. 2023. MiniTracker: Large-Scale Sensitive Information Tracking

in Mini Apps. IEEE Transactions on Dependable and Secure Computing (2023).
[15] Yi Liu, Jinhui Xie, Jianbo Yang, Shiyu Guo, Yuetang Deng, Shuqing Li, Yechang

Wu, and Yepang Liu. 2020. Industry practice of javascript dynamic analysis
on wechat mini-programs. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. 1189–1193.

[16] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFengWang, and
Xueqiang Wang. 2020. Demystifying resource management risks in emerging
mobile app-in-app ecosystems. In Proceedings of the 2020 ACM SIGSAC conference
on computer and communications Security. 569–585.

[17] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia.
2018. Riding out DOMsday: Towards Detecting and Preventing DOM Cross-
Site Scripting. In Network and Distributed System Security Symposium. https:
//api.semanticscholar.org/CorpusID:3389782

[18] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. 2019. Don’t
Trust The Locals: Investigating the Prevalence of Persistent Client-Side Cross-Site
Scripting in the Wild. https://doi.org/10.14722/ndss.2019.23009

[19] Chao Wang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Taint-
mini: Detecting Flow of Sensitive Data in Mini-Programs with Static Taint Anal-
ysis. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). 932–944. https://doi.org/10.1109/ICSE48619.2023.00086

[20] Yuqing Yang, Yue Zhang, and Zhiqiang Lin. 2022. Cross Miniapp Request Forgery:
Root Causes, Attacks, and Vulnerability Detection. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security. https:
//dl.acm.org/doi/pdf/10.1145/3548606.3560597

[21] Lei Zhang, Zhibo Zhang, Ancong Liu, Yinzhi Cao, Xiaohan Zhang, Yanjun
Chen, Yuan Zhang, Guangliang Yang, and Min Yang. 2022. Identity Confu-
sion in WebView-based Mobile App-in-app Ecosystems. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, Boston, MA, 1597–1613.
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-lei

[22] Yue Zhang, Bayan Turkistani, Allen Yuqing Yang, Chaoshun Zuo, and Zhiqiang
Lin. 2021. A Measurement Study of Wechat Mini-Apps. Proc. ACM Meas. Anal.
Comput. Syst. 5, 2, Article 14 (jun 2021), 25 pages. https://doi.org/10.1145/3460081

[23] Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Don’t Leak Your Keys:
Understanding, Measuring, and Exploiting the AppSecret Leaks in Mini-
Programs. ArXiv abs/2306.08151 (2023). https://api.semanticscholar.org/
CorpusID:259165528

 

45

https://developers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/
https://developers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/
https://www.statista.com/statistics/1228315/china-number-of-wechat-mini-program-monthly-active-users/ 
https://www.statista.com/statistics/1228315/china-number-of-wechat-mini-program-monthly-active-users/ 
https://nwjs.io/
https://developers.weixin.qq.com/miniprogram/en/dev/devtools/devtools.html
https://developers.weixin.qq.com/miniprogram/en/dev/devtools/devtools.html
https://developers.weixin.qq.com/miniprogram/en/dev/reference/scene-list.html
https://developers.weixin.qq.com/miniprogram/en/dev/reference/scene-list.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/
https://developers.weixin.qq.com/miniprogram/en/dev/api/
https://developers.weixin.qq.com/miniprogram/dev/framework/runtime/env.html
https://developers.weixin.qq.com/miniprogram/dev/framework/runtime/env.html
https://timebusinessnews.com/wechat-mini-apps-risk-data-leaks/
https://timebusinessnews.com/wechat-mini-apps-risk-data-leaks/
https://www.scmp.com/tech/tech-trends/article/3142239/wechat-mini-programs-banking-pose-significant-risks-personal-data
https://www.scmp.com/tech/tech-trends/article/3142239/wechat-mini-programs-banking-pose-significant-risks-personal-data
https://www.ndss-symposium.org/ndss-paper/auto-draft-207/
https://www.ndss-symposium.org/ndss-paper/auto-draft-207/
https://api.semanticscholar.org/CorpusID:3389782
https://api.semanticscholar.org/CorpusID:3389782
https://doi.org/10.14722/ndss.2019.23009
https://doi.org/10.1109/ICSE48619.2023.00086
https://dl.acm.org/doi/pdf/10.1145/3548606.3560597
https://dl.acm.org/doi/pdf/10.1145/3548606.3560597
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-lei
https://doi.org/10.1145/3460081
https://api.semanticscholar.org/CorpusID:259165528
https://api.semanticscholar.org/CorpusID:259165528

	Abstract
	1 Introduction
	2 Background
	2.1 WeChat Mini-apps
	2.2 Dynamic Taint Analysis

	3 Overview
	3.1 Threat Model
	3.2 Proof-of-Concept Attack

	4 Design
	4.1 Dynamic Taint Analysis
	4.2 Input/Exploit Generation
	4.3 Result Validation

	5 Implementation
	6 Evaluation
	7 Discussion
	8 Related Work
	9 Conclusion
	References



