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ABSTRACT
Mini programs, or MiniApps, have become prevalent in the digi-
tal landscape, offering convenience but raising privacy concerns,
particularly in data minimization. Existing coarse-grained privacy
measures fall short in ensuring effective data minimization due to
the complex structure of MiniApps and the specificities of data us-
age scenarios. This work proposes an innovative end-to-end hybrid
analysis framework, comprising three key modules, to analyze fine-
grained usage-scenario-based data minimization within MiniApps.
The framework constructs the page-transition structure, aligns data
collection with specific purposes, and detects violations of data
minimization principles. We also outline our plan to evaluate the
framework through a large-scale study involving 120K MiniApps.
This research represents a significant advancement in the pursuit
of responsible data practices within MiniApps, contributing to the
broader field of computer science and digital security.
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1 INTRODUCTION
Mini programs, or MiniApps hereafter, have rapidly gained popular-
ity in the digital ecosystem, becoming a prominent feature within
larger hosting platforms, such asWeChat, AliPay, TikTok, etc. These
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small yet powerful applications provide users with streamlined ac-
cess to diverse services, from shopping to social networking, with-
out requiring separate installations. However, their capability to
access and utilize extensive user data, often in ways that transcend
conventional app permissions, has drawn significant attention. As
Miniapps continue to flourish, the complex and sometimes opaque
nature of their data practices has led to mounting privacy concerns.
In particular, the very features that contribute to their flexibility
and functionality also introduce challenges in data management
and control, raising significant questions regarding user privacy,
consent, and security.

In recent years, there has been a global emphasis on privacy
protection, giving rise to stringent regulations and a collective
consciousness towards responsible data handling [1–4, 6, 8, 10,
14]. Hosting platforms have responded by implementing privacy
measures designed to guard permissions and oversee data collection
practices within MiniApps [5]. Yet, these measures often prove
insufficient to guarantee true data minimization. The underlying
issue resides in the current privacy vetting process, which tends
to operate at a coarse-grained level, examining overall data and
permissions requested for a MiniApp. This approach overlooks
the fact that many data collections and permissions are tailored to
very specific tasks within a MiniApp. Therefore, even when overall
privacy-related practices appear reasonable, they do not necessarily
ensure that each individual practice complies with the principle
of data minimization. This disconnect reveals a significant gap in
our understanding and ability to safeguard user privacy within
the increasingly complex world of MiniApps, necessitating a more
refined and task-specific approach to privacy analysis.

Analyzing fine-grained usage-scenario-based data minimization
within MiniApps presents intricate technical challenges. The first
challenge emanates from the current deficiency in our understand-
ing of the exact structure of a MiniApp at runtime. Despite the
abundance of static analysis tools focusing on data flow analysis of
sensitive data, these tools often fall short in addressing the complex-
ity introduced by sub-packages and dead code within MiniApps.
Sub-packages where certain libraries are only executed at run-
time, and dead code where certain parts of the source code are
not reachable during execution, add layers of intricacy that make
conventional static analysis methods inadequate.

The second challenge revolves around the difficulty in obtain-
ing the dedicated functionality for each usage scenario within a
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MiniApp. Given the diverse functionalities and the inherent het-
erogeneity of these applications, discerning the specific purpose
and context for each data collection practice becomes a convoluted
task. This heterogeneity impedes the precise alignment of data
collection with the minimal requirements for fulfilling a specific
task, undermining the ability to ensure that the principle of data
minimization is consistently adhered to. Together, these challenges
underscore the complexity of ensuring data minimization within
MiniApps and point to the necessity for novel approaches that can
accurately navigate the multifaceted environment in which these
applications operate.
Our Work. In response to the challenges, we propose an end-to-
end hybrid analysis framework. This novel framework is composed
of three key modules:

Hybrid Analysis Module: The first module employs a hybrid
analysis technique, utilizing static analysis to parse and construct
the page-transition structure of theMiniApp. This facilitates an easy
identification of the usage scenarios for the user, where each usage
scenario can be considered as a specific pagewithin theMiniApp. By
leveraging dynamic analysis, we can derive the exact data collected
and permissions requested, adding depth and specificity to our
understanding of each scenario.

DataMinimization BenchmarkingModule: The secondmod-
ule focuses on data minimization benchmarking. Using the infor-
mation related to the specific page, we deduce the purpose of that
particular page, and then map this purpose to a corresponding set
of privacy-related permissions. This task-level alignment is crucial
in ascertaining the precise requirements for data access within each
context, enhancing our ability to ensure data minimization.

ComparisonModule: The third module encompasses a compar-
ison mechanism, contrasting the results derived from the previous
modules to detect inconsistencies and potential overreach. It raises
warnings on the pages that violate the data minimization principle,
providing actionable guidance for rectifying these breaches.

Building upon the foundation of our innovative hybrid analysis
framework, we plan to conduct a large-scale study to evaluate
its effectiveness in ensuring data minimization within MiniApps.
The evaluation will be both comprehensive and representative,
leveraging a dataset that consists of a total number of 120,000
MiniApps. This extensive collection will enable us to probe the
nuanced aspects of MiniApp behavior, uncovering insights that
may be generalized across various contexts and platforms. Through
the examination, we aim to not only validate its efficacy but also
refine its methodology, ensuring that it stands as a robust, adaptable
solution for the pressing challenges of data privacy in the fast-
evolving world of MiniApps.

2 METHODOLOGY
2.1 Methodology Overview
Recognizing the complexity and specificity of data usage scenarios,
our approach goes beyond traditional methods, offering a fine-
grained, scenario-based solution. As shown in Figure 1, the frame-
work consists of three key modules, each serving a critical function
in the analysis and enforcement of data minimization principles:

• Hybrid Analysis Module: Constructs the page-transition
structure and identifies usage scenarios.

• Data Minimization Benchmarking Module: Aligns data col-
lection with specific purposes.

• ComparisonModule: Detects violations of data minimization
principles.

2.2 Hybrid Analysis Module
The hybrid analysis model serves as the foundational module of our
framework, focusing on the intricate topology of the MiniApp and
translating it into a discernible functional structure. The complex
nature of MiniApps often results in a diversity of functionalities
interwoven within the same application. By employing a hybrid
analysis approach, we are able to dissect this complexity and pro-
vide a structured view that aligns with the unique characteristics
of MiniApps.

2.2.1 Static Analysis.
UI State Transition Analysis.We initiate the analysis by lever-

aging the UI state transition, using it to construct a topology that
authentically reflects the functional structure of the MiniApp. By
mapping the UI state transitions, we create a network that mirrors
the navigation patterns within the application. This step will also
assist in identification of the dead code inside the MiniApp.

Given that a MiniApp may harbor diverse functionalities and
that each page typically focuses on a specific function (e.g., booking
a ticket, editing a document), it is crucial to isolate these functions
and examine them individually. We thus extract the usage scenarios
on a per-page basis. From the UI state transition model, we can
effectively separate different pages and categorize the diverse usage
scenarios, allowing for targeted analysis of each function.

Permission Request Analysis. In tandem with the functional
analysis, we also examine the requested permissions in the source
code. By scrutinizing the permissions, we obtain a preliminary view
of the access rights required by each page or function. This infor-
mation is vital and serves as a basis that will be further confirmed
and refined during the dynamic analysis phase.

2.2.2 Dynamic Analysis.
In the dynamic analysis component of our hybrid approach, we

place a particular emphasis on identifying subpackages within the
MiniApp, which are crucial as they are loaded only upon execution.
Ignoring these subpackages would hinder comprehensive coverage
during dynamic analysis. To navigate this complexity, we design
algorithms specifically crafted to thoroughly traverse the MiniApp
and trigger potential subpackage downloads. This method ensures
that no functional aspect of the MiniApp is overlooked. Simultane-
ously, we diligently record triggered permission requests during
this process, which serves to validate and corroborate the results
obtained from the static analysis. Through these intricate measures,
the dynamic analysis offers a more exhaustive perspective on the
MiniApp’s structure and behavior, enhancing the overall reliability
of our framework.

2.3 Data Minimization Benchmarking Module
In the data minimization benchmarking module, we undertake a
synergistic approach by leveraging both static and dynamic analy-
sis to deduce the purpose of each usage scenario. This process is
carried out in two key steps. Firstly, we identify the textual contents
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Figure 1: The Architecture and Workflow of Our Framework

displayed for each page. For the static analysis, we ascertain the
page’s purpose by referencing the WXML file, a crucial source that
describes the structural layout of the MiniApp’s pages. To further
complement this, we screenshot each page during the dynamic
traversal process and employ Optical Character Recognition (OCR)
technology to identify the textual content. Secondly, with the aid
of state-of-the-art Natural Language Processing (NLP) techniques,
including the utilization of various large language models (LLMs),
we deduce the specific purpose of each page. This intricate blend of
methods ensures a nuanced and precise understanding of the func-
tionality and intention behind every page in the MiniApp, crucial
for evaluating compliance with data minimization principles.

2.4 Comparison Module
The final component in our framework is the comparison mod-
ule, a critical stage that blends the insights gleaned from both the
functional purpose extracted from each page and the derived per-
missions requested. This fusion enables us to pinpoint instances of
data over-collection beyond what is necessary for the given func-
tion. A key aspect of this process involves mapping the functional
purpose to a predefined set of permissions, an essential step that
facilitates the comparison. By employing this mapping, we are able
to systematically analyze the alignment between the function of
each page and the permissions requested, thereby identifying any
discrepancies. Should a page request permissions that are inconsis-
tent with its functional purpose, this serves as a warning sign of
potential data over-collection.

3 EVALUATION
3.1 Research Questions
We plan to conduct a large-scale evaluation on our framework,
aiming at answering the following research questions (RQs):

• RQ1 (Effectiveness): How effective is the framework
in deducing page purpose and identifying permission re-
quested? This question evaluates the capability of our framework
in accurately deducing the functional purpose of each MiniApp
page and identifying the corresponding permissions requested. The
evaluation includes assessing the precision in understanding page

purposes through static and dynamic analysis, confirming the com-
pleteness and accuracy of captured permissions.

• RQ2 (Ablation Study): How do static and dynamic analyz-
ers contribute to the performance separately? This research
question targets an ablation study to dissect the individual contri-
butions of static and dynamic analyzers within the framework.

• RQ3 (A Large-scale Study in the Real World): How preva-
lent are data minimization violations in MiniApps ecosys-
tem? What are their characteristics? This research question
probes into the frequency and nature of data minimization viola-
tions within MiniApp ecosystem. By utilizing the proposed frame-
work to analyze a substantial dataset of MiniApps, RQ3 aims to
ascertain the extent of over-collection of permissions and data that
goes beyond the necessity of specific functions or pages. The study
will also uncover specific patterns and characteristics of these vio-
lations, shedding light on potential systemic weaknesses or trends.

3.2 Dataset Collection
To collect MiniApps, we utilize MiniCrawler [24] to download
MiniApp packages from theWeChat AppMarket.We have collected
a total of 127,460 MiniApps, with 289 GB of total size. The crawler
works on a server running Ubuntu Linux of 22.04 version with two
64-core AMD EPYC 7713 and 256 GB RAM. To load subpackage at
runtime, the dynamic analysis is run on an Android Virtual Device
(AVD) with a system version of Android 8.1.0 and API version Level
27. The version of WeChat used is 8.0.37, and the WebView kernel
version is 107.0.5304.141.

4 RELATEDWORK
In recent years, MiniApps have emerged as a new application par-
adigm and have garnered significant scholarly interest. Previous
research in this area can be classified into two main aspects.

4.1 MiniApp Security
Several investigations have delved into the security aspects of
Miniapps, shedding light on various vulnerabilities and threats [11,
12, 16, 17, 20–22]. For example, one particular research effort col-
lected 83 real-world MiniApp bugs and gave rise to WeDetector, a
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tool aimed at identifying WeBugs by following three distinct bug
patterns [17]. Another study probed into problems such as system
resource exposure, subwindow spoofing, and subroutine hijacking
within the Mini-Program ecosystem, conducting evaluations on
11 prominent platforms to highlight the pervasive nature of these
security issues [12]. Moreover, a novel issue regarding privacy leaks
in MiniApps has been explored [22], potentially leading to private
data theft by the MiniApp platform, with the researchers detailing
an attack process that exploits this vulnerability. Additionally, the
discovery of a Cross Mini-Program request forgery vulnerability
(CMRF) [20] has been documented, along with the development of
the CMRFScanner tool for its detection.

4.2 MiniApp Privacy
A series of studies have emphasized the importance of privacy in
MiniApp ecosystem [7, 9, 13, 15, 18, 19, 23, 25]. TaintMini [15] in-
troduced a framework for detecting flows of sensitive data within
and across mini-programs using static taint analysis. Another work
MiniTracker [9] constructed assignment flow graphs as common
representation across different host apps and performed a large-
scale study on 150k MiniApps, which revealed the common privacy
leakage patterns. Moreover, several studies [7, 13, 25] have focused
on taint analysis technique to detect AppSecret leaks. In particular,
another work [18] focused on the consistency of data collection
and usage in MiniApps. They crawled 2,998 MiniApps and detected
89.4% of them violated their privacy policies. More recently, Zhang
et al. introduced SPOChecker and performed the first systematic
study of privacy over-collection in MiniApps. Despite these sig-
nificant contributions to understanding privacy dimensions, there
remains a noticeable gap in the literature concerning the privacy
compliance and data minimization of Miniapps, indicating a crucial
area for further exploration and research.

5 CONCLUSION
This research has illuminated the pressing challenge of data min-
imization within the complex domain of MiniApps, a challenge
that has been compounded by existing coarse-grained privacy mea-
sures. In response, we introduced an end-to-end hybrid analysis
framework designed to address this issue at a fine-grained level.
Comprising three key modules, the framework offers a nuanced,
usage-scenario-based approach to data privacy. The planned large-
scale study, encompassing 120K MiniApps, will further validate and
potentially refine this groundbreaking solution. Our work signifies
a vital step towards transparent and responsible data practices in
MiniApps, contributing to broader advances in digital security and
computer science.
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