
On the Usage-scenario-based Data Minimization in Mini
Programs

Shenao Wang
Huazhong University of Science and Technology

Wuhan, Hubei, China
shenaowang@hust.edu.cn

Yanjie Zhao
Monash University

Melbourne, Victoria, Australia
Yanjie.Zhao@monash.edu

Kailong Wang
Huazhong University of Science and Technology

Wuhan, Hubei, China
wangkl@hust.edu.cn

Haoyu Wang
Huazhong University of Science and Technology

Wuhan, Hubei, China
haoyuwang@hust.edu.cn

ABSTRACT
Mini programs, or MiniApps, have become prevalent in the digi-
tal landscape, offering convenience but raising privacy concerns,
particularly in data minimization. Existing coarse-grained privacy
measures fall short in ensuring effective data minimization due to
the complex structure of MiniApps and the specificities of data us-
age scenarios. This work proposes an innovative end-to-end hybrid
analysis framework, comprising three key modules, to analyze fine-
grained usage-scenario-based data minimization within MiniApps.
The framework constructs the page-transition structure, aligns data
collection with specific purposes, and detects violations of data
minimization principles. We also outline our plan to evaluate the
framework through a large-scale study involving 120K MiniApps.
This research represents a significant advancement in the pursuit
of responsible data practices within MiniApps, contributing to the
broader field of computer science and digital security.

CCS CONCEPTS
• Security and privacy → Software security engineering.

KEYWORDS
Mini-programs; Privacy; Data Minimization
ACM Reference Format:
Shenao Wang, Yanjie Zhao, Kailong Wang, and Haoyu Wang. 2023. On the
Usage-scenario-based Data Minimization in Mini Programs. In Proceedings
of the 2023 ACM Workshop on Secure and Trustworthy Superapps (SaTS
’23), November 26, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3605762.3624435

1 INTRODUCTION
Mini programs, or MiniApps hereafter, have rapidly gained popular-
ity in the digital ecosystem, becoming a prominent feature within
larger hosting platforms, such asWeChat, AliPay, TikTok, etc. These
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SaTS ’23, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0258-7/23/11. . . $15.00
https://doi.org/10.1145/3605762.3624435

small yet powerful applications provide users with streamlined ac-
cess to diverse services, from shopping to social networking, with-
out requiring separate installations. However, their capability to
access and utilize extensive user data, often in ways that transcend
conventional app permissions, has drawn significant attention. As
Miniapps continue to flourish, the complex and sometimes opaque
nature of their data practices has led to mounting privacy concerns.
In particular, the very features that contribute to their flexibility
and functionality also introduce challenges in data management
and control, raising significant questions regarding user privacy,
consent, and security.

In recent years, there has been a global emphasis on privacy
protection, giving rise to stringent regulations and a collective
consciousness towards responsible data handling [1–4, 6, 8, 10,
14]. Hosting platforms have responded by implementing privacy
measures designed to guard permissions and oversee data collection
practices within MiniApps [5]. Yet, these measures often prove
insufficient to guarantee true data minimization. The underlying
issue resides in the current privacy vetting process, which tends
to operate at a coarse-grained level, examining overall data and
permissions requested for a MiniApp. This approach overlooks
the fact that many data collections and permissions are tailored to
very specific tasks within a MiniApp. Therefore, even when overall
privacy-related practices appear reasonable, they do not necessarily
ensure that each individual practice complies with the principle
of data minimization. This disconnect reveals a significant gap in
our understanding and ability to safeguard user privacy within
the increasingly complex world of MiniApps, necessitating a more
refined and task-specific approach to privacy analysis.

Analyzing fine-grained usage-scenario-based data minimization
within MiniApps presents intricate technical challenges. The first
challenge emanates from the current deficiency in our understand-
ing of the exact structure of a MiniApp at runtime. Despite the
abundance of static analysis tools focusing on data flow analysis of
sensitive data, these tools often fall short in addressing the complex-
ity introduced by sub-packages and dead code within MiniApps.
Sub-packages where certain libraries are only executed at run-
time, and dead code where certain parts of the source code are
not reachable during execution, add layers of intricacy that make
conventional static analysis methods inadequate.

The second challenge revolves around the difficulty in obtain-
ing the dedicated functionality for each usage scenario within a

29

https://doi.org/10.1145/3605762.3624435
https://doi.org/10.1145/3605762.3624435

SaTS ’23, November 26, 2023, Copenhagen, Denmark Shenao Wang, Yanjie Zhao, Kailong Wang, & Haoyu Wang

MiniApp. Given the diverse functionalities and the inherent het-
erogeneity of these applications, discerning the specific purpose
and context for each data collection practice becomes a convoluted
task. This heterogeneity impedes the precise alignment of data
collection with the minimal requirements for fulfilling a specific
task, undermining the ability to ensure that the principle of data
minimization is consistently adhered to. Together, these challenges
underscore the complexity of ensuring data minimization within
MiniApps and point to the necessity for novel approaches that can
accurately navigate the multifaceted environment in which these
applications operate.
Our Work. In response to the challenges, we propose an end-to-
end hybrid analysis framework. This novel framework is composed
of three key modules:

Hybrid Analysis Module: The first module employs a hybrid
analysis technique, utilizing static analysis to parse and construct
the page-transition structure of theMiniApp. This facilitates an easy
identification of the usage scenarios for the user, where each usage
scenario can be considered as a specific pagewithin theMiniApp. By
leveraging dynamic analysis, we can derive the exact data collected
and permissions requested, adding depth and specificity to our
understanding of each scenario.

DataMinimization BenchmarkingModule: The secondmod-
ule focuses on data minimization benchmarking. Using the infor-
mation related to the specific page, we deduce the purpose of that
particular page, and then map this purpose to a corresponding set
of privacy-related permissions. This task-level alignment is crucial
in ascertaining the precise requirements for data access within each
context, enhancing our ability to ensure data minimization.

ComparisonModule: The third module encompasses a compar-
ison mechanism, contrasting the results derived from the previous
modules to detect inconsistencies and potential overreach. It raises
warnings on the pages that violate the data minimization principle,
providing actionable guidance for rectifying these breaches.

Building upon the foundation of our innovative hybrid analysis
framework, we plan to conduct a large-scale study to evaluate
its effectiveness in ensuring data minimization within MiniApps.
The evaluation will be both comprehensive and representative,
leveraging a dataset that consists of a total number of 120,000
MiniApps. This extensive collection will enable us to probe the
nuanced aspects of MiniApp behavior, uncovering insights that
may be generalized across various contexts and platforms. Through
the examination, we aim to not only validate its efficacy but also
refine its methodology, ensuring that it stands as a robust, adaptable
solution for the pressing challenges of data privacy in the fast-
evolving world of MiniApps.

2 METHODOLOGY
2.1 Methodology Overview
Recognizing the complexity and specificity of data usage scenarios,
our approach goes beyond traditional methods, offering a fine-
grained, scenario-based solution. As shown in Figure 1, the frame-
work consists of three key modules, each serving a critical function
in the analysis and enforcement of data minimization principles:

• Hybrid Analysis Module: Constructs the page-transition
structure and identifies usage scenarios.

• Data Minimization Benchmarking Module: Aligns data col-
lection with specific purposes.

• ComparisonModule: Detects violations of data minimization
principles.

2.2 Hybrid Analysis Module
The hybrid analysis model serves as the foundational module of our
framework, focusing on the intricate topology of the MiniApp and
translating it into a discernible functional structure. The complex
nature of MiniApps often results in a diversity of functionalities
interwoven within the same application. By employing a hybrid
analysis approach, we are able to dissect this complexity and pro-
vide a structured view that aligns with the unique characteristics
of MiniApps.

2.2.1 Static Analysis.
UI State Transition Analysis.We initiate the analysis by lever-

aging the UI state transition, using it to construct a topology that
authentically reflects the functional structure of the MiniApp. By
mapping the UI state transitions, we create a network that mirrors
the navigation patterns within the application. This step will also
assist in identification of the dead code inside the MiniApp.

Given that a MiniApp may harbor diverse functionalities and
that each page typically focuses on a specific function (e.g., booking
a ticket, editing a document), it is crucial to isolate these functions
and examine them individually. We thus extract the usage scenarios
on a per-page basis. From the UI state transition model, we can
effectively separate different pages and categorize the diverse usage
scenarios, allowing for targeted analysis of each function.

Permission Request Analysis. In tandem with the functional
analysis, we also examine the requested permissions in the source
code. By scrutinizing the permissions, we obtain a preliminary view
of the access rights required by each page or function. This infor-
mation is vital and serves as a basis that will be further confirmed
and refined during the dynamic analysis phase.

2.2.2 Dynamic Analysis.
In the dynamic analysis component of our hybrid approach, we

place a particular emphasis on identifying subpackages within the
MiniApp, which are crucial as they are loaded only upon execution.
Ignoring these subpackages would hinder comprehensive coverage
during dynamic analysis. To navigate this complexity, we design
algorithms specifically crafted to thoroughly traverse the MiniApp
and trigger potential subpackage downloads. This method ensures
that no functional aspect of the MiniApp is overlooked. Simultane-
ously, we diligently record triggered permission requests during
this process, which serves to validate and corroborate the results
obtained from the static analysis. Through these intricate measures,
the dynamic analysis offers a more exhaustive perspective on the
MiniApp’s structure and behavior, enhancing the overall reliability
of our framework.

2.3 Data Minimization Benchmarking Module
In the data minimization benchmarking module, we undertake a
synergistic approach by leveraging both static and dynamic analy-
sis to deduce the purpose of each usage scenario. This process is
carried out in two key steps. Firstly, we identify the textual contents

30

On the Usage-scenario-based Data Minimization in Mini Programs SaTS ’23, November 26, 2023, Copenhagen, Denmark

WXAPKG

Unpacker

Hybrid Analysis Module Data Minimization Benchmarking Module Comparison Module

Subpackage Exploration

Permission Exploration

(II) Dymamic UI Trigger

(I) Static Analyzer

UI State Transition Analysis

Permission Request Analysis

JSON

(I) Static Purpose Analyzer

(II) Dynamic Purpose Analyzer

Semantic Extraction

LLM-based Purpose Inference

OCR-based Semantic Extraction

LLM-based Purpose Inference

(I) Purpose-Permission Mapping

Page Function Purpose

Permission Requested

(II) Data Minimization Checker

Data Minimization Violations

Page

Snapshot

WXML

Purpose-Permission Consistency

✘

Figure 1: The Architecture and Workflow of Our Framework

displayed for each page. For the static analysis, we ascertain the
page’s purpose by referencing the WXML file, a crucial source that
describes the structural layout of the MiniApp’s pages. To further
complement this, we screenshot each page during the dynamic
traversal process and employ Optical Character Recognition (OCR)
technology to identify the textual content. Secondly, with the aid
of state-of-the-art Natural Language Processing (NLP) techniques,
including the utilization of various large language models (LLMs),
we deduce the specific purpose of each page. This intricate blend of
methods ensures a nuanced and precise understanding of the func-
tionality and intention behind every page in the MiniApp, crucial
for evaluating compliance with data minimization principles.

2.4 Comparison Module
The final component in our framework is the comparison mod-
ule, a critical stage that blends the insights gleaned from both the
functional purpose extracted from each page and the derived per-
missions requested. This fusion enables us to pinpoint instances of
data over-collection beyond what is necessary for the given func-
tion. A key aspect of this process involves mapping the functional
purpose to a predefined set of permissions, an essential step that
facilitates the comparison. By employing this mapping, we are able
to systematically analyze the alignment between the function of
each page and the permissions requested, thereby identifying any
discrepancies. Should a page request permissions that are inconsis-
tent with its functional purpose, this serves as a warning sign of
potential data over-collection.

3 EVALUATION
3.1 Research Questions
We plan to conduct a large-scale evaluation on our framework,
aiming at answering the following research questions (RQs):

• RQ1 (Effectiveness): How effective is the framework
in deducing page purpose and identifying permission re-
quested? This question evaluates the capability of our framework
in accurately deducing the functional purpose of each MiniApp
page and identifying the corresponding permissions requested. The
evaluation includes assessing the precision in understanding page

purposes through static and dynamic analysis, confirming the com-
pleteness and accuracy of captured permissions.

• RQ2 (Ablation Study): How do static and dynamic analyz-
ers contribute to the performance separately? This research
question targets an ablation study to dissect the individual contri-
butions of static and dynamic analyzers within the framework.

• RQ3 (A Large-scale Study in the Real World): How preva-
lent are data minimization violations in MiniApps ecosys-
tem? What are their characteristics? This research question
probes into the frequency and nature of data minimization viola-
tions within MiniApp ecosystem. By utilizing the proposed frame-
work to analyze a substantial dataset of MiniApps, RQ3 aims to
ascertain the extent of over-collection of permissions and data that
goes beyond the necessity of specific functions or pages. The study
will also uncover specific patterns and characteristics of these vio-
lations, shedding light on potential systemic weaknesses or trends.

3.2 Dataset Collection
To collect MiniApps, we utilize MiniCrawler [24] to download
MiniApp packages from theWeChat AppMarket.We have collected
a total of 127,460 MiniApps, with 289 GB of total size. The crawler
works on a server running Ubuntu Linux of 22.04 version with two
64-core AMD EPYC 7713 and 256 GB RAM. To load subpackage at
runtime, the dynamic analysis is run on an Android Virtual Device
(AVD) with a system version of Android 8.1.0 and API version Level
27. The version of WeChat used is 8.0.37, and the WebView kernel
version is 107.0.5304.141.

4 RELATEDWORK
In recent years, MiniApps have emerged as a new application par-
adigm and have garnered significant scholarly interest. Previous
research in this area can be classified into two main aspects.

4.1 MiniApp Security
Several investigations have delved into the security aspects of
Miniapps, shedding light on various vulnerabilities and threats [11,
12, 16, 17, 20–22]. For example, one particular research effort col-
lected 83 real-world MiniApp bugs and gave rise to WeDetector, a

31

SaTS ’23, November 26, 2023, Copenhagen, Denmark Shenao Wang, Yanjie Zhao, Kailong Wang, & Haoyu Wang

tool aimed at identifying WeBugs by following three distinct bug
patterns [17]. Another study probed into problems such as system
resource exposure, subwindow spoofing, and subroutine hijacking
within the Mini-Program ecosystem, conducting evaluations on
11 prominent platforms to highlight the pervasive nature of these
security issues [12]. Moreover, a novel issue regarding privacy leaks
in MiniApps has been explored [22], potentially leading to private
data theft by the MiniApp platform, with the researchers detailing
an attack process that exploits this vulnerability. Additionally, the
discovery of a Cross Mini-Program request forgery vulnerability
(CMRF) [20] has been documented, along with the development of
the CMRFScanner tool for its detection.

4.2 MiniApp Privacy
A series of studies have emphasized the importance of privacy in
MiniApp ecosystem [7, 9, 13, 15, 18, 19, 23, 25]. TaintMini [15] in-
troduced a framework for detecting flows of sensitive data within
and across mini-programs using static taint analysis. Another work
MiniTracker [9] constructed assignment flow graphs as common
representation across different host apps and performed a large-
scale study on 150k MiniApps, which revealed the common privacy
leakage patterns. Moreover, several studies [7, 13, 25] have focused
on taint analysis technique to detect AppSecret leaks. In particular,
another work [18] focused on the consistency of data collection
and usage in MiniApps. They crawled 2,998 MiniApps and detected
89.4% of them violated their privacy policies. More recently, Zhang
et al. introduced SPOChecker and performed the first systematic
study of privacy over-collection in MiniApps. Despite these sig-
nificant contributions to understanding privacy dimensions, there
remains a noticeable gap in the literature concerning the privacy
compliance and data minimization of Miniapps, indicating a crucial
area for further exploration and research.

5 CONCLUSION
This research has illuminated the pressing challenge of data min-
imization within the complex domain of MiniApps, a challenge
that has been compounded by existing coarse-grained privacy mea-
sures. In response, we introduced an end-to-end hybrid analysis
framework designed to address this issue at a fine-grained level.
Comprising three key modules, the framework offers a nuanced,
usage-scenario-based approach to data privacy. The planned large-
scale study, encompassing 120K MiniApps, will further validate and
potentially refine this groundbreaking solution. Our work signifies
a vital step towards transparent and responsible data practices in
MiniApps, contributing to broader advances in digital security and
computer science.

ACKNOWLEDGEMENT
The authors would like to thank all the anonymous shepherd and
reviewers for improving this manuscript. We also thank Moxuan
Wang, Lizheng Wang, Zhengyang Xiao, Qian Huang for their in-
sightful discussions and feedbacks. This work was supported in
part by National Key R&D Program of China (2021YFB2701000), the
National Natural Science Foundation of China (grant No.62072046),
Knowledge Innovation Program of Wuhan-Basic Research and
HUST CSE-HongXin Joint Institute for Cyber Security.

REFERENCES
[1] 2022. Act on the Protection of Personal Information. https://www.ppc.go.jp/.
[2] 2022. California Consumer Privacy Act. https://oag.ca.gov/privacy/ccpa.
[3] 2022. General Data Protection Regulation. https://commission.europa.eu/law/

law-topic/data-protection_en.
[4] 2022. Personal Data Protection Act. https://www.pdpc.gov.sg/.
[5] 2023. WECHAT POLICY. https://www.wechat.com/en/privacy_policy.html.
[6] Benjamin Andow, Samin Yaseer Mahmud, JustinWhitaker, William Enck, Bradley

Reaves, Kapil Singh, and Serge Egelman. 2020. Actions speak louder than
words:{Entity-Sensitive} privacy policy and data flow analysis with {PoliCheck}.
In 29th USENIX Security Symposium (USENIX Security 20). 985–1002.

[7] Supraja Baskaran, Lianying Zhao, Mohammad Mannan, and Amr Youssef. 2023.
Measuring the Leakage and Exploitability of Authentication Secrets in Super-
apps: The WeChat Case. arXiv preprint arXiv:2307.09317 (2023).

[8] Duc Bui, Yuan Yao, Kang G Shin, Jong-Min Choi, and Junbum Shin. 2021. Consis-
tency analysis of data-usage purposes in mobile apps. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security. 2824–2843.

[9] Wei Li, Borui Yang, Hangyu Ye, Liyao Xiang, Qingxiao Tao, Xinbing Wang, and
Chenghu Zhou. 2023. MiniTracker: Large-Scale Sensitive Information Tracking
in Mini Apps. IEEE Transactions on Dependable and Secure Computing (2023).

[10] Yuxi Ling, Kailong Wang, Guangdong Bai, Haoyu Wang, and Jin Song Dong.
2022. Are they toeing the line? diagnosing privacy compliance violations among
browser extensions. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering. 1–12.

[11] Yi Liu, Jinhui Xie, Jianbo Yang, Shiyu Guo, Yuetang Deng, Shuqing Li, Yechang
Wu, and Yepang Liu. 2020. Industry practice of javascript dynamic analysis
on wechat mini-programs. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. 1189–1193.

[12] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFengWang, and
Xueqiang Wang. 2020. Demystifying resource management risks in emerging
mobile app-in-app ecosystems. In Proceedings of the 2020 ACM SIGSAC conference
on computer and communications Security. 569–585.

[13] Shi Meng, Liu Wang, Shenao Wang, Kailong Wang, Xusheng Xiao, Guangdong
Bai, and Haoyu Wang. 2023. WeMinT: Tainting Sensitive Data Leaks in WeChat
Mini-Programs. In Proceedings of the 38th IEEE/ACM International Conference on
Automated Software Engineering. IEEE.

[14] Faysal Hossain Shezan, Zihao Su, Mingqing Kang, Nicholas Phair, PatrickWilliam
Thomas, Michelangelo van Dam, Yinzhi Cao, and Yuan Tian. 2023. CHKPLUG:
Checking GDPR Compliance of WordPress Plugins via Cross-language Code
Property Graph.. In NDSS.

[15] Chao Wang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Taint-
mini: Detecting flow of sensitive data in mini-programs with static taint analysis.
In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
IEEE, 932–944.

[16] Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. Uncovering and Exploiting
Hidden APIs in Mobile Super Apps. arXiv preprint arXiv:2306.08134 (2023).

[17] Tao Wang, Qingxin Xu, Xiaoning Chang, Wensheng Dou, Jiaxin Zhu, Jinhui Xie,
Yuetang Deng, Jianbo Yang, Jiaheng Yang, JunWei, et al. 2022. Characterizing and
detecting bugs in WeChat mini-programs. In Proceedings of the 44th International
Conference on Software Engineering. 363–375.

[18] Yin Wang, Ming Fan, Junfeng Liu, Junjie Tao, Wuxia Jin, Qi Xiong, Yuhao Liu,
Qinghua Zheng, and Ting Liu. 2023. Do as You Say: Consistency Detection of
Data Practice in Program Code and Privacy Policy in Mini-App. arXiv preprint
arXiv:2302.13860 (2023).

[19] Yuqing Yang, Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. SoK: Decoding
the Super App Enigma: The Security Mechanisms, Threats, and Trade-offs in
OS-alike Apps. arXiv preprint arXiv:2306.07495 (2023).

[20] Yuqing Yang, Yue Zhang, and Zhiqiang Lin. 2022. Cross Miniapp Request Forgery:
Root Causes, Attacks, and Vulnerability Detection. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security. 3079–3092.

[21] Jianyi Zhang, Leixin Yang, Yuyang Han, Zixiao Xiang, and Xiali Hei. 2023. A
Small Leak Will Sink Many Ships: Vulnerabilities Related to mini-programs
Permissions. In 2023 IEEE 47th Annual Computers, Software, and Applications
Conference (COMPSAC). IEEE, 595–606.

[22] Lei Zhang, Zhibo Zhang, Ancong Liu, Yinzhi Cao, Xiaohan Zhang, Yanjun Chen,
Yuan Zhang, Guangliang Yang, and Min Yang. 2022. Identity Confusion in
{WebView-based} Mobile App-in-app Ecosystems. In 31st USENIX Security Sym-
posium (USENIX Security 22). 1597–1613.

[23] Xiaohan Zhang, Yang Wang, Xin Zhang, Ziqi Huang, Lei Zhang, and Min Yang.
2023. Understanding Privacy Over-collection in WeChat Sub-app Ecosystem.
arXiv preprint arXiv:2306.08391 (2023).

[24] Yue Zhang, Bayan Turkistani, Allen Yuqing Yang, Chaoshun Zuo, and Zhiqiang
Lin. 2021. A measurement study of wechat mini-apps. ACM SIGMETRICS Perfor-
mance Evaluation Review 49, 1 (2021), 19–20.

[25] Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Don’t Leak Your Keys: Un-
derstanding, Measuring, and Exploiting the AppSecret Leaks in Mini-Programs.
arXiv preprint arXiv:2306.08151 (2023).

32

https://www.ppc.go.jp/
https://oag.ca.gov/privacy/ccpa
https://commission.europa.eu/law/law-topic/data-protection_en
https://commission.europa.eu/law/law-topic/data-protection_en
https://www.pdpc.gov.sg/
https://www.wechat.com/en/privacy_policy.html

	Abstract
	1 Introduction
	2 methodology
	2.1 Methodology Overview
	2.2 Hybrid Analysis Module
	2.3 Data Minimization Benchmarking Module
	2.4 Comparison Module

	3 Evaluation
	3.1 Research Questions
	3.2 Dataset Collection

	4 Related Work
	4.1 MiniApp Security
	4.2 MiniApp Privacy

	5 Conclusion
	References

