
Towards a Better Super-App Architecture from a Browser Security
Perspective

Yue Wang
Ant Group

Hangzhou, Zhejiang, China
darcy.wy@antgroup.com

Yao Yao
Ant Group

Hangzhou, Zhejiang, China
vicky.yy@antgroup.com

Shangcheng Shi
Ant Group

Hangzhou, Zhejiang, China
shishangcheng.ssc@antgroup.com

Weiting Chen
Ant Group

Hangzhou, Zhejiang, China
weiting.cwt@antgroup.com

Lin Huang
Ant Group

Beijing, China
linyu.hl@antgroup.com

ABSTRACT
As multi-service mobile applications, the super-apps provide users
with great convenience and satisfy most of our daily needs. Rid-
ing on the increasing popularity of super-apps, researchers from
academia and industry have studied multiple aspects of mini-apps
regarding security issues, including permission mechanisms, secure
communication, access control, etc. However, little effort has been
spent to analyze the underlying web technologies employed by
super-apps. In this paper, we conduct the first study to understand
the security mechanisms of super-apps from a browser perspective.
We describe the relationship and significant differences between
browsers and super-apps, especially the security features of tradi-
tional browsers and the challenges in applying them to super-apps.
Further, we propose security guidelines about resources, storage,
credentials, and privacy management to build a more secure super-
app.

CCS CONCEPTS
• Security and privacy → Software and application security.

KEYWORDS
super-app, browser, security, privacy
ACM Reference Format:
Yue Wang, Yao Yao, Shangcheng Shi, Weiting Chen, and Lin Huang. 2023.
Towards a Better Super-App Architecture from a Browser Security Perspec-
tive. In Proceedings of the 2023 ACM Workshop on Secure and Trustworthy
Superapps (SaTS ’23), November 26, 2023, Copenhagen, Denmark. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3605762.3624427

1 INTRODUCTION
Nowadays, (mobile) super-apps offer various services, such as pay-
ment, healthcare, and travel booking within a single app. Gartner
predicts that over half of the global population will use multiple
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SaTS ’23, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0258-7/23/11. . . $15.00
https://doi.org/10.1145/3605762.3624427

super-apps daily by 2027[17]. In contrast, mobile web apps work in
mobile browsers, e.g., Safari, and can only access few native features
from the underlying operating system. Therefore, mobile web apps
provide limited services and suffer worse user experiences. As a
workaround, super-apps usually host and support mini-apps within
WebViews[5]. Moreover, the super-app provides powerful APIs[20]
to its mini-apps via a JavaScript bridge. This hybrid solution facili-
tates mini-apps with both web technologies and native capabilities
so that end-users can use mini-apps without installations and enjoy
a similar experience to (mobile) native apps.

Motivated by the widespread adoption of mini-apps, several aca-
demic works have studied the security of associated super-apps.
For example, Lu et al.[9] revealed the resource management vulner-
abilities by super-apps, while Zhang et al.[32] explored an identity-
confusing vulnerability in super-apps. On the other hand, Wang
et al.[24] studied the vulnerabilities of hidden APIs in super-apps.
Nevertheless, no existing works have studied the differences be-
tween super-apps and the browser, especially standardized security
protection solutions for super-apps from the browser security per-
spective.

To bridge the gap, we first explore the relationship between
super-app and mainstream browsers like Chrome[4] and Safari[7].
It reveals that the super-app takes multiple browser techniques
to support the mini-app and thus inherits the threat model of the
browser. Through in-depth study, the existing security features
and security mechanisms in browsers are not applicable in super-
apps. Therefore, a standardized security protection mechanism for
super-apps is equally necessary but missing. In summary, this paper
makes the following contributions:

• We discuss the relationship between browsers and super-
apps, highlighting their notable similarities and differences.

• We explore the security features of traditional browsers and
the challenges in applying them to super-apps.

• Finally, we propose a set of security guidelines based on
identity entities.

We organize the rest of the paper as follows. In Section 2, we
briefly demystify the relationship between super-apps and tra-
ditional browsers, including the security features of traditional
browsers and their functions. Section 3 describes the differences
between the super-app and the browsers and explains why security
features for browsers cannot apply to super-apps directly. Then, we
propose security guidelines for more secure super-apps in Section 4.

23

https://doi.org/10.1145/3605762.3624427
https://doi.org/10.1145/3605762.3624427

SaTS ’23, November 26, 2023, Copenhagen, Denmark Yue Wang, Yao Yao, Shangcheng Shi, Weiting Chen, & Lin Huang

We review the related work in Section 5 and eventually conclude
the paper in Section 6.

2 BACKGROUND
As common sense, in-browser web apps offer advantages such as
cross-platform compatibility, lower development costs, and rapid
iteration. Consequently, super-apps leverage similar browser tech-
nologies, includingmarkup languages, rendering engines, JavaScript
engines[25], and Web APIs[16], to benefit from these advantages.

In [30], three clusters of solutions adopted by super-apps are
proposed, namely Integrated WebView, Customized Engine-based
Mini-app, and WebView-based Mini-app. The Integrated WebView
solutions refer to traditional browsers such as Chrome, Firefox, and
Opera. On the other hand, the other two types of super-apps differ
regarding the code distribution and execution environment. We
will delve into these differences later in Section 3.1, while their
commonalities are discussed first.

Native App

JS EngineWebView

JavaScript Framework

Package

JavaScript Bridge

Super-app

Developer Tool

Developer

Super-app Server
XML

CSS

JavaScript

Config.json

Third-party Server

Mini-app
Market

Mini-app
Package

index.js
index.html worker.js

a

b

c

· · ·

Figure 1: The Architecture of One Customized Engine-Based
Super-App

2.1 Relationship Between Super-Apps and
Traditional Browser

2.1.1 Similar Markup Language. Super-apps and browsers share
similarities regarding front-end programming, utilizing common
markup languages and CSS-based stylesheets. Specifically, mini-
apps typically use HTML-like markup languages, CSS-like styling
languages, and JavaScript.

2.1.2 Similar Rendering Engine and JavaScript Engine. Both super-
apps and web browsers rely on rendering engines and JavaScript
engines to parse and render mini-apps and web pages. A typical
example of rendering engines in browsers is WebKit, while JSC[6]
and V8[8] are the most widely used JavaScript engines. Toward this
end, super-apps generally employ a rendering engine and JavaScript
engine that is either the same or comparable to those utilized in
web browsers.

2.1.3 Similar APIs. To either a mini-app or web application, inter-
actions with the back-end and data storage are essential to fulfill
various functionalities, such as user authentication, shopping order
inquiries, and real-time communication. Traditional browsers pro-
vide a large number of Web APIs for web apps, while super-apps
provide a wide range of JavaScript APIs to their mini-apps.

2.2 Threat Model
As discussed above, the super-app adopts multiple techniques from
the browser so that its threat model is also inherited. Specifically, the
super-appmaps to the browser, while these webpages correspond to
mini-apps. To characterize the security architecture of super-apps,
we define the threat model as follows.

The Attacker’s Capabilities:

• We assume that an attacker can develop or control multiple
malicious mini-apps that try to evade the security checking
by super-apps.

• The attackers may lure users into visiting their malicious
mini-apps, e.g., scanning QR codes or invoking mini-apps
through mobile applications on user devices.

• Attackers can access any publicly available online mini-apps
and utilize them without any restrictions.

The Attacker’s Goals: The attacker desires to acquire the user
privacy stored within the super-app. Besides, the attacker also aims
to steal the user data in other mini-apps, including the credential
data.

2.3 Security Features of Traditional Browser
Web browsers adhere to strict security models to safeguard user
data and privacy. Given the significant correlation between super-
apps and browsers, the security features utilized by browsers serve
as valuable references when establishing a security mechanism
for super-apps. Therefore, we will focus on the popular mobile
browsers, including Safari and Chrome.

To address the threat model discussed earlier, we will discuss
three key security strategies: Same Origin Policy, Content Security
Policy, and Privacy Features. Notably, we only highlight several
essential security features related to the above threat model.

2.3.1 Same Origin Policy. The same-origin policy (SOP)[13] is a
critical security mechanism of the web that restricts how a docu-
ment or script loaded by one origin can interact with a resource from
another[13]. The SOP restricts the behaviors, including cross-origin
network access, cross-origin script API access, and cross-origin data
storage access.

Cross-Origin Network Access.The method for cross-origin net-
work access is to use CORS (Cross-Origin Resource Sharing)[27].
This mechanism allows the server to indicate the different origins
(domain, scheme, or port) from which a browser should permit
loading resources.

Cross-Origin Script API. Browser Object Model (BOM)[26], e.g.,
Window and Location objects as well as Web APIs like window.open
and window.opener, allows the same origin documents to reference
each other directly. However, cross-origin access to Window and
Location properties is limited and only available to certain BOM
properties in the browser.

24

Towards a Better Super-App Architecture from a Browser Security Perspective SaTS ’23, November 26, 2023, Copenhagen, Denmark

Cross-originData StorageAccess. In the scenario ofweb browsers,
Web Storage APIs and IndexedDB are isolated by origin. In other
words, one origin cannot read or write the data belonging to another
origin.

2.3.2 Content Security Policy. Content Security Policy (CSP)[10]
is a powerful security mechanism employed by websites to protect
against various types of attacks, such as cross-site scripting (XSS)
and data injection. It allows websites to define and enforce a set of
rules that decide which resources and actions are allowed on their
website. By implementing a CSP, websites can significantly reduce
the risk of malicious activities and enhance overall security.

2.3.3 Privacy Features. Browsers offer privacy-related Web APIs
that grant access to potentially sensitive data, and these Web APIs
are typically available only in secure contexts[14], meaning they
require HTTPS connections. Furthermore, these Web APIs are pro-
tected by a user permission system, ensuring that private data is
only available to the page after the user grant.

3 DIFFERENCES AND NEW SECURITY
CHALLENGES

As mentioned in Section 2, there are significant differences be-
tween super-apps based on Customized Engine-based mini-apps
and WebView-based mini-apps, and traditional browsers. Specifi-
cally, code distribution and execution environment change in the
context of super-app, leading to mini-app identity confusion issues.
Subsequently, we discuss the challenges when super-apps adopt
browser security features.

3.1 Differences Between Super-Apps and
Traditional Browser

3.1.1 Code Distribution. For web apps, their code is deployed on
the related web server such that the user can access these web
pages dynamically through the URL online. On the contrary, it
is the super-app that takes charge of the code distribution for its
mini-apps. To be specific, the red path in Fig. 1 presents how to
create and distribute a Customized Engine-based mini-app from
the developer aspect. At the very beginning, the developer needs
to use a dedicated IDE tool (from the super-app) to implement his
mini-app, which is mainly made up of the following four parts.

• XML: files constructing the UI of a mini-app, e.g., buttons
and text area, etc.

• CSS: CSS-style file(s), including font size and color, etc.
• JavaScript: file(s) for executing the logic of the mini-app, e.g.,
network communication.

• Config.json: a configuration file recording the basic informa-
tion of a mini-app.

Once completed, the mini-app will be distributed to the end users
for practical use, which consists of three steps.

a The developer uploads his code to the mini-app market
hosted by the super-app server.

b The super-app server compiles the given code into a format-
ted mini-app package.

c Before the execution, the resultant mini-app package of the
mini-app is distributed to the user’s mobile phone.

A WebView-based mini-app follows a similar workflow, but the
difference lies in that super-app does not distribute the mini-app
package to user devices.

3.1.2 Execution Environment. Web applications are based on Web
standards[15][21] and can be executed in any browser. While mini-
apps usually can only run in a specific super-app. As shown in Fig
1., When the super-app starts a Customized Engine-based mini-app,
it decompresses the mini-app package first and extracts the files
inside for the actual execution later. More specifically, a browser
thread handles the index.js and index.html files, where theWebView
renders the UI pages and sets a universal virtual domain for the
mini-app. The virtual domain of mini-apps is usually of the same
origin to facilitate management and performance experience in the
preload phase. Besides, the super-app creates a JavaScript engine
thread to execute the worker.js file, namely the logic of the mini-app.
Meanwhile, a customized JavaScript framework has been injected
into the WebView and the JavaScript engine beforehand to register
a JavaScript bridge object, mainly for calling APIs and the data-
binding between the DOM[11] and JavaScript of mini-apps.

The difference of a WebView-based mini-app from the Cus-
tomized Engine-based mini-app is that it does not download the
mini-app package to the local device, but directly accesses resources
through network requests. It utilizes the Android/iOS WebView for
rendering. Similarly, the WebView-based mini-apps share the same
domain, and the super-app registers a JavaScript Bridge.

3.2 Security Challenges
As mentioned above, Customized Engine-based mini-apps and
WebView-based mini-apps tend to share the same domain defined
by the underlying super-apps. The main reason for such practices is
that the super apps cannot allocate separate domains for their mini-
apps, whose total amount keeps increasing. Thus, these mini-apps
need to use a unified domain. However, this customization intro-
duces challenges for implementing access control mechanisms be-
tween mini-apps, as the inherent security features of web browsers
rely on domain-based access control.

3.2.1 Resource Sharing. In a typical scenario, a mini-app uses net-
work communication to fetch resources from its server. However,
a potential attack vector arises when an attacker controls a ma-
licious mini-app and impersonates other mini-apps to establish
communication with their servers. Once such an exploit succeeds,
the attacker can access user data from other mini-apps, including
sensitive information like credentials.

Traditional web browsers employ CORS mechanisms to restrict
requests from untrusted sources by utilizing HTTP headers such as
"Access-Control-Allow-Origin". However, in the context of super-
app, accurately determining the identity of the mini-app by the
CORS protection mechanisms in the request becomes challenging.

Similarly, when a related webpage is embedded into the mini-
app, there is a potential vulnerability where an attacker can use
a malicious mini-app and embed that particular webpage. By de-
ceiving the user into interacting with the embedded webpage, the
attacker can compromise the personal data of the user.

25

SaTS ’23, November 26, 2023, Copenhagen, Denmark Yue Wang, Yao Yao, Shangcheng Shi, Weiting Chen, & Lin Huang

In traditional web browsers, the Content Security Policy (CSP)
mechanism enables embedded pages to specify the permitted do-
mains for embedding. However, in the context of super-apps, where
mini-apps share the same domain, the embedded page fails to dif-
ferentiate between authorized and unauthorized mini-apps for em-
bedding.

3.2.2 Storage. Inevitably, mini-apps require data storage capabili-
ties for user preferences and offline functionalities. Traditional web
browsers offer various Web APIs for storage, such as localStorage
and indexedDB, which are isolated based on the same-origin policy
security mechanism. As to super-app, a potential exploit appears
where a malicious mini-app can gain unauthorized access to user
data stored by other mini-apps through the browser-provided APIs.

3.2.3 Credentials. During the communication between a mini-app
and its backend server, it is common to cache credentials, such
as cookies, to authenticate the user identity. In traditional web
browsers, the isolation mechanism of cookies is employed to pre-
vent the leakage of credentials between different domains. Concern-
ing super-app, the attacker can manipulate a malicious mini-app to
gain access to the credential information of other mini-apps. They
can also impersonate other mini-apps to establish communication
with their respective backend servers, utilizing their credential
information to steal the user data.

3.2.4 Privacy. In certain scenarios, mini-appsmay require access to
the user privacy, such as location or microphone access. Traditional
web browsers provide a set of Web APIs to retrieve sensitive data.
When aweb app requests access to the privacy, the browser prompts
the user with a pop-up, notifying them that a specific site is seeking
their private information. Once the user grants the permission,
the domain is added to a whitelist, and subsequent requests will
be permitted. However, mini-apps share the same domain, so a
potential attack surface arises. Once a user has granted a specific
mini-app access to their sensitive data via the browser’s Web API,
an attacker can manipulate a malicious mini-app to retrieve the
user’s private information by invoking the Web API without the
user’s awareness.

4 GUIDELINES FOR A MORE SECURE
SUPER-APP ARCHITECTURE

4.1 A Proposed Architecture for Super-Apps
Based on the above context, the super-app faces various risks of
malicious mini-app impersonation as it cannot recognize the mini-
app identity properly. To address this challenge, this article proposes
a new security architecture for super-apps based on identity entity.

As shown in Fig 2, the Native part of the super-app contains
three components: Handlers, Identity Center, and Security Modules.
Handlers include Event Handlers and API Handlers, facilitating
cross-process interactions with the WebView and JavaScript engine.
They serve as the entry points for interface implementations. The
Identity Center is the core of the security design model, maintaining
the principal identity of each running mini-app. It is designed to be
untamperable and unforgeable. The Security Modules consist of the
Storage Manager, Privacy Manager, Resource Permission Checker,
and Credential Manager.

The blue arrows in the diagram depict the process of security
checks and handling mini-app events as follows:

(1) When the WebView and JavaScript engine call the JavaScript
APIs or trigger certain WebView events, such as opening
an embedded webpage, the events are sent to the Event
Handlers and API Handlers through IPC.

(2) The Handlers first consult the Identity Center to retrieve
the current identity of the mini-app. After that, the identity
information is associated with the event data.

(3) TheHandlers communicatewith the securitymodules, which
perform access control and isolation based on the identity
of the mini-app.

It is noteworthy that the WebView and JavaScript engine are
implemented by isolated processes in the sandbox. Therefore, even
if they are exploited, the attackers cannot tamper with the Native
process or its critical components, such as the Identity Center.

With the security architecture above, we will now discuss how
it can address the four security challenges in the following.

4.2 Solutions to the Security Challenges of
Super-apps

IPC

Communicate with
mini-app identity

Storage Manager
Identity
Center

Privacy Manager

Resource Permission
Checker

Credential Manager

API HandlersEvent Handlers

WebView JS Engine

JavaScript APIJavaScript APIWebView Event

Obtain mini-app
identity

1

32

Sandbox

Handlers

Security Modules

Native App

Figure 2: A New Security Architecture for Super-Apps Based
on Identity Entity

4.2.1 Resource Permission Checker. Resource Permission Checker
uses a whitelist mechanism to determine whether the mini-app can
share resources as a replacement for CORS. This whitelist contains
the domains associated with the mini-app, which have been verified
beforehand. Specifically, the mini-app developers are required to
declare their domains in the submitted source code (Step a in Fig. 1),
and the super-app server responds with a verification file. Then, the
developers need to place this file in the root directory of the claimed
domains, which will be later verified by the super-app server by
network access. Once the whitelist domain name is verified, the

26

Towards a Better Super-App Architecture from a Browser Security Perspective SaTS ’23, November 26, 2023, Copenhagen, Denmark

mini-app is allowed to access resources of this domain name in the
whitelist.

Super-app should restrict the usage of traditional browser Web
APIs such as Fetch and XMLHttpRequest and instead utilize the
network APIs provided by super-app. Nonetheless, enabling these
Web APIs would bypass the Resource Permission Checker and
potentially expose the risks mentioned in Section 3.2.1.

Similarly, when embedding a web page within a mini-app, the
Resource Permission Checker will validate whether the domain
of the embedded page presents in the whitelist associated with
the current mini-app. Only when the domain appears, the page is
allowed to be loaded.

4.2.2 Storage Manager. Storage Manager allocates a sandbox for
each mini-app for file access. This sandbox can only be accessed by
the respective mini-app to achieve read and write isolation. Due
to the identity confusion issue of mini-apps, super-app should also
restrict the usage of traditional browser storage Web APIs such as
localStorage and indexedDB and instead provide new ones for its
mini-apps.

4.2.3 Credential Manager. Credential Manager maintains a data-
base for each mini-app, which stores information such as the do-
main, content, and expiration time of the credential. Through es-
tablishing access control mechanisms, each credential database is
accessible only by its corresponding mini-app. During the commu-
nication between a mini-app and its backend server, the super-app
stores the credential data from the server through the Credential
Manager. Similarly, when a mini-app sends a request, super-app
retrieves the cached credential data from the Credential Manager
and includes it in the request.

4.2.4 Privacy Manager. Privacy Manager assigns a permission list
to each mini-app. When a mini-app initially requests privacy per-
mission, e.g., location access, super-app prompts the user that a
specific mini-app is seeking location permission. Once the user
grants authorization, super-app records this information to the per-
mission list of the specific mini-app through the Privacy Manager.
When the mini-app requests this permission again later, the super-
app will check whether it has been granted and directly return the
result if permitted.

Once again, the super-app should restrict the usage of traditional
browser Web APIs for privacy permission requests, e.g., geolocation,
and instead define new ones for their mini-apps. Besides, the super-
app can enhance privacy permission management and allow users
to revoke permissions. Notably, this feature has not appeared in
most browsers[12].

5 RELATEDWORK
Mini-app Security. As mentioned in Section 2, the rise of mini-
apps has gained significant popularity in the field of mobile security.
Zhang et al. [33] present the first large-scale mini-app crawler
MiniCrawler and measure the API usage and obfuscation rate of
the mini-apps. [34] also uses a mini-apps crawler and specially
implements a master key leakage inspector to detect the master
keys leaked in mini-apps. [22] presents TaintMini, a static taint
analysis framework that can detect the flow of sensitive data in

mini-apps and identified privacy risks. However, these studies lack
the analysis of the security mechanism of super apps.

Several studies have investigated the security weaknesses that
can be exploited by malicious mini-apps. For instance, [31] presents
a novel cross-miniapp request forgery (CMRF) attack, which is
caused by the missing checks of the sender’s AppID in a receiver
mini-app. And Zhang et al.[32] explore an identity-confusing vul-
nerability in super-apps. On the other hand, Wang et al [24] [23]
study the vulnerabilities of hidden APIs and discrepant APIs in
super-apps leading to security and privacy issues. In contrast to
prior efforts, our work presents a standardized security protection
solution for super-apps, avoiding common identity confusion flaws
and implementing appropriate security controls.

Browser Security. The browser security is related to web ex-
tensions [2, 3, 28] and security architecture[1, 18, 35]. For example,
[19] reveals web applications and exploits extension privileged ca-
pabilities to bypass SOP for accessing user data or credentials on
any other web application. Regard the security architecture, Yang
et al. [29] believe that information flow control(IFC) is a promising
replacement for existing browser security mechanisms. Regardless
of the advancements in web browser security mechanisms, they are
generally not directly applicable to super-apps due to the inherent
differences between the two. To ensure the security of super-apps,
it is necessary to re-implement specialized security mechanisms
specifically tailored for them.

6 CONCLUSION
In this paper, we discuss the relationship between browsers and
super-apps, highlighting their typical differences. We explore the
security features of traditional browsers and the challenges when
applying them to super-apps. Finally, we propose security guide-
lines based on identity entity to build a more secure super-app.

Nonetheless, it is important to notice that the security solutions
listed in this paper are not the only options that a super-app may
adopt, which are crucial security strategies derived from a browser
perspective. When designing and developing a super-app, it is also
necessary to consider other security features and measures, such
as data encryption, access control, etc., to ensure comprehensive
security of the application.

REFERENCES
[1] Nataliia Bielova. 2013. Survey on JavaScript security policies and their en-

forcement mechanisms in a web browser. The Journal of Logic and Algebraic
Programming 82, 8 (2013), 243–262.

[2] Nicholas Carlini, Adrienne Porter Felt, and David Wagner. 2012. An Evalu-
ation of the Google Chrome Extension Security Architecture. In 21st USENIX
Security Symposium (USENIX Security 12). USENIX Association, Bellevue, WA, 97–
111. https://www.usenix.org/conference/usenixsecurity12/technical-sessions/
presentation/carlini

[3] Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering Informa-
tion Leakage from Browser Extensions. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, David Lie, MohammadMannan, Michael Backes, and
XiaoFengWang (Eds.). ACM, 1687–1700. https://doi.org/10.1145/3243734.3243823

[4] Chrome. 2023. Google Chrome Browser. Retrieved 2023 from https://www.
google.com/chrome/

[5] Google. 2023. WebView. Retrieved June 7, 2023 from https://developer.android.
com/reference/android/webkit/WebView

[6] Apple Inc. 2023. JavaScriptCore. Retrieved 2023 from https://developer.apple.
com/documentation/javascriptcore

[7] Apple Inc. 2023. Safari Browser. Retrieved 2023 from https://www.apple.com/
safari/

27

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/carlini
https://doi.org/10.1145/3243734.3243823
https://www.google.com/chrome/
https://www.google.com/chrome/
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://developer.apple.com/documentation/javascriptcore
https://developer.apple.com/documentation/javascriptcore
https://www.apple.com/safari/
https://www.apple.com/safari/

SaTS ’23, November 26, 2023, Copenhagen, Denmark Yue Wang, Yao Yao, Shangcheng Shi, Weiting Chen, & Lin Huang

[8] Google LLC. 2023. V8 (JavaScript engine). Retrieved 2023 from https://v8.dev/
[9] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFengWang, and

Xueqiang Wang. 2020. Demystifying Resource Management Risks in Emerging
Mobile App-in-App Ecosystems. In CCS ’20: 2020 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, USA, November 9-13, 2020,
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM, 569–585.
https://doi.org/10.1145/3372297.3417255

[10] MDN. 2023. Content Security Policy (CSP). Retrieved July 7, 2023 from https:
//developer.mozilla.org/en-US/docs/Web/HTTP/CSP

[11] MDN. 2023. Introduction to the DOM. Retrieved May 21, 2023
from https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_
Model/Introduction

[12] MDN. 2023. Permissions: revoke() method. Retrieved April 8, 2023 from
https://developer.mozilla.org/en-US/docs/Web/API/Permissions/revoke

[13] MDN. 2023. Same-origin policy. Retrieved July 4, 2023 from https://developer.
mozilla.org/en-US/docs/Web/Security/Same-origin_policy

[14] MDN. 2023. Secure contexts. Retrieved Jul 4, 2023 from https://developer.mozilla.
org/en-US/docs/Web/Security/Secure_Contexts

[15] MDN. 2023. The web and web standards. Retrieved August 22, 2023
from https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_
web/The_web_and_web_standards

[16] MDN. 2023. Web APIs. Retrieved Feb 20, 2023 from https://developer.mozilla.
org/en-US/docs/Web/API

[17] Lori Perri. 2022. What Is a Superapp? Retrieved September 28, 2022 from
https://www.gartner.com/en/articles/what-is-a-superapp

[18] Charles Reis, Adam Barth, and Carlos Pizano. 2010. Browser Security: Lessons
from Google Chrome Google Chrome developers focused on three key problems
to shield the browser from attacks. Communications of the Acm 52, 8 (2010),
45–49.

[19] Dolière Francis Somé. 2019. EmPoWeb: Empowering Web Applications with
Browser Extensions. In 2019 IEEE Symposium on Security and Privacy (SP). 227–
245. https://doi.org/10.1109/SP.2019.00058

[20] W3C. 2022. MiniApp Standardization White Paper version 2. Retrieved July,
2022 from https://www.w3.org/TR/mini-app-white-paper/#api_and_component

[21] W3C. 2023. Web Standards. Retrieved 2023 from https://www.w3.org/standards/
[22] Chao Wang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Taint-

mini: Detecting Flow of Sensitive Data in Mini-Programs with Static Taint Anal-
ysis. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). 932–944. https://doi.org/10.1109/ICSE48619.2023.00086

[23] Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. One Size Does Not Fit All:
Uncovering and Exploiting Cross Platform Discrepant APIs in WeChat. In 32nd
USENIX Security Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-
11, 2023, Joseph A. Calandrino and Carmela Troncoso (Eds.). USENIX Association.

https://www.usenix.org/conference/usenixsecurity23/presentation/wang-chao
[24] Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. Uncovering and Exploiting

Hidden APIs in Mobile Super Apps. CoRR abs/2306.08134 (2023). https://doi.org/
10.48550/arXiv.2306.08134 arXiv:2306.08134

[25] Wiki. 2023. JavaScript engine. Retrieved August 6, 2023 from https://en.wikipedia.
org/wiki/JavaScript_engine

[26] wikipedia. 2023. Browser Object Model. Retrieved May 22, 2023 from https:
//en.wikipedia.org/wiki/Browser_Object_Model

[27] wikipedia. 2023. Cross-origin resource sharing. Retrieved July 4, 2023 from
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

[28] Xinyu Xing, Wei Meng, Byoungyoung Lee, Udi Weinsberg, Anmol Sheth, Roberto
Perdisci, andWenke Lee. 2015. UnderstandingMalvertising ThroughAd-Injecting
Browser Extensions. In Proceedings of the 24th International Conference on World
Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, Aldo Gangemi, Stefano
Leonardi, and Alessandro Panconesi (Eds.). ACM, 1286–1295. https://doi.org/10.
1145/2736277.2741630

[29] Edward Yang, Deian Stefan, John Mitchell, David Mazières, Petr Marchenko, and
Brad Karp. 2013. Toward Principled Browser Security. In 14th Workshop on Hot
Topics in Operating Systems (HotOS XIV). USENIX Association, Santa Ana Pueblo,
NM. https://www.usenix.org/conference/hotos13/session/yang

[30] Yuqing Yang, Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. SoK: Decoding
the Super App Enigma: The Security Mechanisms, Threats, and Trade-offs in
OS-alike Apps. arXiv:2306.07495 [cs.CR]

[31] Yuqing Yang, Yue Zhang, and Zhiqiang Lin. 2022. Cross Miniapp Request Forgery:
Root Causes, Attacks, and Vulnerability Detection. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security (Los Angeles,
CA, USA) (CCS ’22). Association for Computing Machinery, New York, NY, USA,
3079–3092. https://doi.org/10.1145/3548606.3560597

[32] Lei Zhang, Zhibo Zhang, Ancong Liu, Yinzhi Cao, Xiaohan Zhang, Yanjun
Chen, Yuan Zhang, Guangliang Yang, and Min Yang. 2022. Identity Confu-
sion in WebView-based Mobile App-in-app Ecosystems. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, Boston, MA, 1597–1613.
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-lei

[33] Yue Zhang, Bayan Turkistani, Allen Yuqing Yang, Chaoshun Zuo, and Zhiqiang
Lin. 2021. A Measurement Study of Wechat Mini-Apps. Proceedings of the ACM
on Measurement and Analysis of Computing Systems 5, 2 (2021), 1–25.

[34] Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Don’t Leak Your Keys:
Understanding, Measuring, and Exploiting the AppSecret Leaks in Mini-
Programs. CoRR abs/2306.08151 (2023). https://doi.org/10.48550/arXiv.2306.08151
arXiv:2306.08151

[35] Marin Šilić, Jakov Krolo, and Goran Delač. 2010. Security vulnerabilities in
modern web browser architecture. In The 33rd International Convention MIPRO.
1240–1245.

28

https://v8.dev/
https://doi.org/10.1145/3372297.3417255
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Permissions/revoke
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/The_web_and_web_standards
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/The_web_and_web_standards
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://www.gartner.com/en/articles/what-is-a-superapp
https://doi.org/10.1109/SP.2019.00058
https://www.w3.org/TR/mini-app-white-paper/#api_and_component
https://www.w3.org/standards/
https://doi.org/10.1109/ICSE48619.2023.00086
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-chao
https://doi.org/10.48550/arXiv.2306.08134
https://doi.org/10.48550/arXiv.2306.08134
https://arxiv.org/abs/2306.08134
https://en.wikipedia.org/wiki/JavaScript_engine
https://en.wikipedia.org/wiki/JavaScript_engine
https://en.wikipedia.org/wiki/Browser_Object_Model
https://en.wikipedia.org/wiki/Browser_Object_Model
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://doi.org/10.1145/2736277.2741630
https://doi.org/10.1145/2736277.2741630
https://www.usenix.org/conference/hotos13/session/yang
https://arxiv.org/abs/2306.07495
https://doi.org/10.1145/3548606.3560597
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-lei
https://doi.org/10.48550/arXiv.2306.08151
https://arxiv.org/abs/2306.08151

	Abstract
	1 Introduction
	2 Background
	2.1 Relationship Between Super-Apps and Traditional Browser
	2.2 Threat Model
	2.3 Security Features of Traditional Browser

	3 Differences and New Security Challenges
	3.1 Differences Between Super-Apps and Traditional Browser
	3.2 Security Challenges

	4 Guidelines for a more Secure Super-App Architecture
	4.1 A Proposed Architecture for Super-Apps
	4.2 Solutions to the Security Challenges of Super-apps

	5 Related Work
	6 Conclusion
	References

