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ABSTRACT
In recent years, the rise of miniapps, lightweight applications based
on WebView, has become a prominent trend in mobile app develop-
ment. This trend has rapidly expanded on popular social platforms
like WeChat, TikTok, Grab, and even Snapchat. In these miniapps,
user data is pivotal for providing personalized services and im-
proving user experience. However, there are still shortcomings in
identifying the source of sensitive data in miniapps. This paper
introduces MUID, an innovative method for detecting user input
data in miniapps. MUID integrates an engine that can dynami-
cally test miniapps to overcome the challenges in WebView page
extraction, uses a hybrid analysis approach to identify sensitive
components, and infers the type of information collected based on
contextual hint words. In the evaluation of MUID across 30 popular
miniapps randomly selected on WeChat, we demonstrated its high
dynamic testing efficiency and its capability to recognize compo-
nents with a recall rate of 95.74% and a precision rate of 81.32%. The
overall precision of MUID is 78.31%, and the recall rate is 92.19%,
demonstrating the effectiveness of MUID in conducting security
and privacy analyses.

CCS CONCEPTS
• Security and privacy → Web application security; Software
security engineering; • Software and its engineering;
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1 INTRODUCTION
Recent years have marked an intriguing trend within the realm of
mobile application development: the rapid emergence of miniapps.
These are lightweight applications, grounded in WebView technol-
ogy, and have become increasingly prevalent across widely used
social platforms like WeChat, TikTok, Grab, and Snapchat. These
miniapps, which can operate directly within their host applications
without separate downloads[26], offer users a range of convenient
services[25]. By doing so, They have expanded the functionality of
superapps, further evolving them into comprehensive "operating
systems" designed to cater to a diverse spectrum of user needs[19].
This miniapp paradigm has garnered substantial global traction.
A case in point is WeChat, a pioneer in this space, which report-
edly hosts over 4.3 million miniapps[10], spanning services from
social to e-commerce, thereby significantly simplifying mobile user
experiences.

User data plays an instrumental role in delivering personalized
services and enhancing user experiences within these miniapps.
The management and safeguarding of such data present signifi-
cant concerns[6–8]. Prior research has scrutinized the sensitive
APIs offered by superapps. For example, Wang et al. [20] identified
potential misuse of specific APIs that lacked sufficient security eval-
uation, and developed APIScope to identify these overlooked APIs.
Additionally, Zhang et al. [25] found an insufficient verification
process for privileged APIs, often leading to a more extensive range
of API permissions than originally anticipated. Nevertheless, these
methodologies primarily concentrate on sensitive data derived from
API calls, neglecting user-input data in the graphical user interface
(GUI), such as addresses and phone numbers. This may lead to a
lack of sensitive data leakage detection at the source.

Therefore, effective detection of user-input data is of paramount
importance for maintaining user privacy and augmenting the user
experience in miniapps. However, this presents a formidable chal-
lenge. The lightweight characteristics of miniapps, combined with
their unique operational environments, demand specialized data
detection techniques divergent from those employed in traditional
mobile applications. Previous research [1, 11, 15, 16, 21] fail to han-
dle the dynamic page views predicated on WebView, underlining
the necessity for dedicated research focusing on user-input data
detection within the realm of miniapps.

In this paper, we present a novel miniapp user-input detection
system, MUID, proficient in autonomously analyzing a miniapp’s
GUI to parse user-input data. MUID utilizes innovative techniques
across three primary stages, advancing the state of the art in dy-
namic execution, component recognition, and semantic parsing.
Initially, in the dynamic execution stage, MUID performs testing
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on the miniapp, deriving dynamic page layouts. Subsequently, in
component recognition stage, MUID employs hybrid analysis to
accurately identify sensitive input components. Following this, in
semantic parsing stage, MUID infers the type of data collected based
on contextual hint words. In summary, the primary contributions
of this paper include:

• We develop the first tool specifically engineered for user-
input detection in miniapps.

• We propose a novel method for component recognition in
WebView pages, which is a critical challenge not tackled in
prior research.

• We conduct a empirical assessment of MUID on a compre-
hensive set of miniapps, with a recall rate of 92.19% and a
precision rate of 78.31%, thereby demonstrating its efficacy
in performing security and privacy analysis.

2 MOTIVATING EXAMPLE
As shown in Figure 1, we provide an example of user-input on a
dynamic page predicated on WebView. In this context, users are
required to provide specific details, such as their work email and
full address, to complete the enterprise user application. However,
the corresponding terms of service do not explicitly enumerate
the necessary information: "When registering a member account
and using member services, you should furnish your information
accurately and comprehensively in accordance with the prompts on
the page." This vagueness, in conjunction with the ’hot update’
feature of webview (allowing developers to alter content within the
WebView page without modifying the client source code), equips
applications with the ability to modify the data they collect at
any point, circumventing platform scrutiny. This practice presents
potential threats to user privacy, considering the highly sensitive
nature of such data and the grave consequences that could result
from improper exposure.

Miniapp UI rendering mechanism: miniapps utilize a ren-
dering mechanism predicated on webview, with the objective of
harmonizing the rapid development capacities of web technology
and a near-native, immersive user experience. For instance, WeChat
miniapps on Android employ the proprietary XWeb engine, derived
from the Mobile Chromium kernel, for rendering purposes, while
iOS platforms employWK-WebView for the identical task.WebView
is a component deployed for integrating web content within mobile
applications, functioning as a display container for web content.
As depicted in the component tree on the right side of Figure 1, all
miniapp pages are housed within the Webview component. The
displayed content, hosted on a remote server, is beyond the com-
plete scope of static analysis, which incorporates reverse parsing
of source files, as the WebView components necessitate real-time
acquisition.

3 SYSTEM DESIGN
In this section, we delve into the intricacies of MUID’s design and
the pivotal technologies it employs. The operation of MUID is
primarily divided into three essential stages. The first stage employs
a dynamic execution engine designed to capture webpage layout
information. Following this, during the component recognition
stage, the procured page layouts, which comprise both webpage

Figure 1: Example of User Input in WebView Page

screenshots and XML layout files, are meticulously analyzed to
identify specific sensitive components. Lastly, the semantic parsing
stage infers the types of information gathered. It can simultaneously
match and bind hint words to the corresponding input components
as text is dynamically loaded.

3.1 Dynamic Execution
As the smallest granular component within Android native pages,
the WebView component is inseparable in its entirety when the
UiAutomator framework [9] is employed for information acqui-
sition and native page modeling, nor can it perceive its internal
information. Therefore, to implement a dynamic execution engine,
We modified UICrawler[12], an Appium-based testing framework.
Through synchronizing the Chromedriver version with the mobile
phone’s Chrome kernel version, we establish communication with
the Chrome kernel via the ChromeDevtoolProtocol, thereby facili-
tating the acquisition of page structure. Yet, as its original form is a
webpage, its GUI hierarchy and component types may not entirely
correspond with the native interface. This discrepancy might result
in inconsistencies during Appium’s component transformation[2].
For example, <div contenteditable="true"> could be converted into
<view>, which miss the editable attritute. We proposed a solution
to this issue in Section 3.2.

Once the page structure is acquired, Appium plays a crucial
role in constructing the Document Object Model (DOM) tree. The
GUI model is then established with the component as the smallest
granularity, and testing is implemented using a Monkey strategy.
Concurrently, we employ text similarity to evaluate whether the
page has undergone a status change. In a bid to augment testing
coverage, we allocate greater weights to components that can po-
tentially trigger page changes, thereby amplifying their likelihood
of selection in succeeding tests.

3.2 Component Recognition
Adhering to Google’s official definitions of components, we have
identified components that can receive user input, such as EditText,
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Figure 2: System Overview of MUID

Algorithm 1: Sensitive Components Recognition
Input: 𝑠𝑒𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 𝑖𝑛𝑖𝑡_𝑙𝑖𝑠𝑡 ( )
Output: 𝑠𝑒𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 //Sensitive Components

1 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 𝐺𝑒𝑛𝐶𝑜𝑚𝑝𝐹𝑟𝑜𝑚𝑋𝑚𝑙 (𝑥𝑚𝑙 )
2 𝑠𝑢𝑝𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦_𝑠𝑒𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 =

𝐺𝑒𝑛𝑆𝑒𝑛𝐶𝑜𝑚𝑝𝐹𝑟𝑜𝑚𝐼𝑚𝑔 (𝑖𝑚𝑎𝑔𝑒 )
3 foreach 𝑠𝑢𝑝_𝑐𝑜𝑚𝑝 ∈ 𝑠𝑢𝑝𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦_𝑠𝑒𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 do
4 foreach 𝑐𝑜𝑚𝑝 ∈ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 do
5 if𝑚𝑎𝑡𝑐ℎ (𝑠𝑢𝑝_𝑐𝑜𝑚𝑝, 𝑐𝑜𝑚𝑝 ) 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝.𝑡𝑦𝑝𝑒 == 𝑉𝑖𝑒𝑤 then
6 𝑐𝑜𝑚𝑝.𝑡𝑦𝑝𝑒 = 𝑠𝑢𝑝𝑐𝑜𝑚𝑝.𝑡𝑦𝑝𝑒

7 𝑏𝑟𝑒𝑎𝑘

8 foreach 𝑐𝑜𝑚𝑝 ∈ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 do
9 if 𝑐𝑜𝑚𝑝.𝑡𝑦𝑝𝑒 𝑖𝑛 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒_𝑡𝑦𝑝𝑒𝑠 then
10 𝑠𝑒𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠.𝑎𝑑𝑑 (𝑐𝑜𝑚𝑝 )

11 return 𝑠𝑒𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

AbsSpinner, CheckedTextView, RadioButton, CheckBox, ToggleBut-
ton, Switch, SwitchCompat, and RatingBar, to act as our sensitive
components. However, certain inconsistencies may arise when con-
verting components from Web to native format, thereby posing a
challenge to the accurate identification of sensitive components. To
counter this problem, our component identification engine amalga-
mates page screenshots with page layout files for recognition. For
a detailed examination of the process, refer to Algorithm 1.

Initially, the function 𝐺𝑒𝑛𝐶𝑜𝑚𝑝𝐹𝑟𝑜𝑚𝑋𝑚𝑙 constructs the DOM
from the page layout XML file, thus generating a set of components.
Subsequently, the function 𝐺𝑒𝑛𝑆𝑒𝑛𝐶𝑜𝑚𝑝𝐹𝑟𝑜𝑚𝐼𝑚𝑔 employs a tar-
get recognition algorithm to identify specified components from
the provided page screenshot, thereby generating a supplementary
set of sensitive components. For the purpose of this paper, we uti-
lize the pre-trained model yolov7[23]with training data sourced
from rico[3]. Following this, we iterate through the supplementary
sensitive component set, cross-referencing it with the original com-
ponent set. Upon finding a corresponding component that fulfills
specific criteria (i.e., position can match and component type is
View), we modify the component type to match the correspond-
ing supplementary sensitive component type. Finally, we iterate
through the amended component set, incorporating components
identified as sensitive components into 𝑠𝑒𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 , which is
subsequently returned as the final target value.

3.3 Semantic Parsing
Text Filtering: During the component conversion process facil-
itated by Appium, some components’ text attributes might be
lost, potentially leading to oversights if hint words are exclusively
sourced from the page layout file. To rectify this, we utilize Optical
Character Recognition (OCR) to supplement the text information.
However, since OCR recognizes all the text on the page, it signifi-
cantly escalates the amount of candidate text requiring processing.
Hence, we introduce a pre-trained Bert model to filter out irrel-
evant or noise text. Considering that page text is typically short,
we choose to employ ChatGPT to generate relevant training data,
which is classified into two categories. The first category includes
text featuring sensitive information types and collection intent,
such as "please input your telephone". The second category encom-
passes text devoid of specific sensitive information types, such as
"my service", and phrases that, although containing sensitive in-
formation types, do not intend to collect them, as in "under-screen
fingerprint mobile phone" (where the sensitive information type
serves as a noun modifying another noun). To enhance the quality
of the training data further, we integrate application category re-
strictions into the ChatGPT prompts, such as "Please give me 5 hint
words for input boxes containing sensitive information types, which
may appear in financial category applications". Emphasizing cate-
gories is because different application categories collect varying
ranges of sensitive information. Following training on these two
types of data, we derive a binary classifier based on Bert. We then
retain only those texts from the OCR-recognized and page layout
file that contain sensitive information types and a collection intent
as candidate text.

HintWords and Sensitive ComponentMatching: Text recog-
nized by OCR includes position coordinates, although the units of
measurement might not correspond with the position coordinates
of sensitive components in the page layout. Hence, the normaliza-
tion of these two types of position coordinates becomes our initial
task. From the experience, hint words typically appear on the left,
above, or encapsulated within sensitive components. Consequently,
a mere reliance on the computation of centroid angle relations to
ascertain positional relationships proves inadequate. In such in-
stances, guided by the aforementioned experiential knowledge of
positional relationships, we initially generate a set of candidate hint
words for each sensitive component. Subsequently, we compute the
distance between these hint words and the centroid of the sensitive
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component, with a preference for matching the hint word that is
nearest in terms of distance.

Information Type Inference: In compliance with relevant
privacy protection regulations (i.e. GDPR[4] and PIPL[17]), we as-
semble a two-level sensitive information type dictionary[22]. The
first level represents the broad category of the information type,
including 13, such as health information, device information, and
identity information. The second level clearly indicates the spe-
cific information collected, with a total of 80 items. For example,
for health information, the second level information will include
hospital records, medical records, weight, height, etc. Each specific
information has a considerable number of instance forms extracted
from real-world code and GUI. For hostalization records, there are
forms such as doctor Id, doctor name, admission time, description
of the condition, etc. We use Spacy[5] to calculate the semantic sim-
ilarity between the hint word and all instance forms of the second
level information type, then calculate the average value, and select
the second level information type with the highest average similar-
ity as the pertinent information type. This two-level information
type structure will facilitate subsequent analyses, such as assessing
whether the collected information contravenes privacy protection
regulations or the application’s privacy policy.

4 EVALUATION
In this section, we evaluate the effectiveness of the key modules
within MUID. To extract the page layout of miniapps, we ran the
dynamic execution of MUID on a Google Pixel4, operating on An-
droid 11. We chose WeChat miniapps as our test samples,given
their dominant presence in the field of miniapps, with the WeChat
version being 8.0.34. We randomly selected 30 miniapps based on
industry and popularity as our samples.

4.1 Dynamic Execution Performance
For the dynamic execution engine, we made a comparative analysis
with FastBot[14]. Given that miniapps do not incorporate a distinct
concept of Activity, traditional dynamic testing standards, which
are guided by Activity coverage, prove inadequate. We propose
to evaluate the test depth by quantifying the number of compo-
nents covered, that is, the sum of components of all pages obtained
by MUID running for a period of time. Note that components on
similar pages cannot be counted repeatedly. Similarity between
pages is assessed by determining whether the text similarity of
their layout files exceeds a certain threshold. MUID, on average of
executing a 10-minute run, is able to cover 1391.7 components in
this time frame, which is 519.6 more than FastBot. This superior
performance can be attributed to the fact that FastBot is not op-
timized for miniapps, leading to frequent exits from the miniapp
interface. For the user input pages obtained by the above 30 mini
programs, manually mark sensitive component information, hint
words, and information types, totaling 56 pages and 141 sensitive
components.

4.2 User Input Detection Performance
Sensitive component recognition is the foundation for subsequent
analysis of user input detection. We assessed the performance of
MUID in recognizing sensitive components within the 56 user input

pages acquired as mentioned above. We have categorized these 56
pages into five distinct categories according to the purpose of infor-
mation collection: travel, login, express, finance, and authentication
(auth.). We consider the sensitive components that are consistent
with manual labeling as true positives, and those that are incon-
sistent as false positives. Sensitive components missed in manual
labeling are regarded as false negatives. Notably, the concept of
true negatives is inapplicable in this context. Table 1 shows the
recognition results of MUID’s sensitive components, with the high-
est proportion of login pages (53.57%), an precision rate of 84.84%,
a recall rate of 98.24%, and a total precision rate of 81.32%, with a
recall rate of 95.74%.

We further evaluated the comprehensive performance of MUID
subsequent to component recognition stage and semantic parsing
stage. Our standard for measuring overall performance is to detect
whether sensitive component information and information type are
the same as those manually assigned labeled. If they are consistent,
they are considered true positive, otherwise they are considered
false positive. The rules for true and false negatives remain con-
sistent with those established for component recognition. Table 1
shows the overall results, with a MUID final precision of 78.31%, a
recall rate of 92.19%, and an F1-measure of 84.68%.

Themain factor affecting the precision ofMUID is the insufficient
text filtering during the semantic parsing stage, which leads to some
non sensitive prompt words being considered sensitive prompt
words. The training data is generated from chatgpt, but this may
differ from real-world data.

5 RELATEDWORK
Miniapp Security: A multitude of studies have probed into the
security facets of miniapps. Yang et al. [24] formulated CmrfScanner
to ascertain if there is an absence of appid checks in cross-miniapp
requests. Lu et al. [13] studied the resource isolation model of
the host App for miniapps and identified some flaws that could
potentially leak user privacy. Wang et al. [18] devised TAINTMINI
to track tainted data flows in miniapps. Unlike these studies, our
primary focus lies in identifying the user-input in miniapps.

User Input Detection: Nan et al. [15] identified user input by
training classifiers on static layout resources and code semantic
information. Huang et al. [11] introduced SUPOR, a system that
procures layout files with coordinates by modifying the ADT static
rendering engine, and pairs this with taint analysis technology to
construct a privacy leakage discovery system. Andow et al. [1]
developed UiRef that obtains page layout by dynamically travers-
ing all Activities in APK. Wang et al. [21] proposed GUILeak, an
instrument that discerns whether privacy leakage of user input
data breaches the application’s privacy policy. However, these tools,
which primarily target Android applications, exhibit shortcomings
in the sphere of miniapps, as they fall short in analyzing Web-
View components. Contrarily, the method proposed in this paper
is capable of detecting user input in miniapps.

6 CONCLUSION
In this paper, we introduce MUID, an innovative approach for de-
tecting user input data in miniapps. MUID circumvents the pre-
vailing challenges related to WebView analysis by creating a novel
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Table 1: User Input Detection Results

Pages Components Prec.(CR) Rec.(CR) F1(CR) Prec.(O) Rec.(O) F1(O)
travel 5 19 85% 89.47% 87.17% 85% 89.47% 87.17%
login 30 57 84.84% 98.24% 91.04% 81.81% 94.73% 87.79%
express 12 36 75% 100% 85.71% 70.83% 94.44% 80.94%
finance 6 23 84.61% 95.65% 89.79% 80.76% 91.3% 85.71%
auth. 3 6 66.66% 66.66% 66.66% 66.66% 66.66% 66.66%
sum 56 141 81.32% 95.74% 87.94% 78.31% 92.19% 84.68%

1 CR refers to MUID’s Component Recognition results
2 O refers to MUID’s overall results

GUI model to conduct dynamic testing. It utilizes a hybrid analysis
strategy to pinpoint sensitive components and infers the type of
information collected based on contextual cues and prompt words.
Evaluations conducted on 30 miniapps indicate that MUID can
achieve a recall rate of 92.19% and a precision rate of 78.31%.
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