
JSLibD: Reliable and Heuristic Detection of Third-party Libraries
in Miniapps

Junjie Tao

taojunjie@stu.xjtu.edu.cn

Xi’an Jiaotong University

Jifei Shi

sjf528@stu.xjtu.edu.cn

Xi’an Jiaotong University

Ming Fan
∗

mingfan@mail.xjtu.edu.cn

Xi’an Jiaotong University

Yin Wang

wy0724@stu.xjtu.edu.cn

Xi’an Jiaotong University

Junfeng Liu

liujunfeng@stu.xjtu.edu.cn

Xi’an Jiaotong University

Ting Liu

tingliu@mail.xjtu.edu.cn

Xi’an Jiaotong University

ABSTRACT
Miniapps have become an indispensable part of people’s lives. Mean-

while, the utilization of third-party libraries greatly streamlines,

expedites, and enhances the development of miniapps. However,

ensuring the security of these third-party libraries presents a chal-

lenge, as they may harbor security vulnerabilities, such as plaintext

transmission.

In this paper, we propose JSLibD, an automated extraction

method for third-party libraries in miniapps. Unlike conventional

extraction methods that heavily rely on prior knowledge, JSLibD
introduces a heuristic prediction approach, comprising two integral

components: a whitelist matching method to match the known

libraries and a heuristic prediction method to extract the unknown

libraries using function call relationships. The results demonstrate

that JSLibD can efficiently match known libraries, and accurately

predict unknown libraries, achieving an impressive precision rate

of 85.9% and a high recall rate of 97.2%.

CCS CONCEPTS
• Security and privacy → Web application security; Software
security engineering; • Software and its engineering;

KEYWORDS
Mobile Security, Miniapp, Third-party Library

ACM Reference Format:
Junjie Tao, Jifei Shi, Ming Fan, YinWang, Junfeng Liu, and Ting Liu. 2023. JS-

LibD: Reliable and Heuristic Detection of Third-party Libraries in Miniapps.

In Proceedings of the 2023 ACM Workshop on Secure and Trustworthy Super-
apps (SaTS ’23), November 26, 2023, Copenhagen, Denmark. ACM, New York,

NY, USA, 6 pages. https://doi.org/10.1145/3605762.3624428

∗
*Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SaTS 2023, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0258-7/23/11. . . $15.00

https://doi.org/10.1145/3605762.3624428

1 INTRODUCTION
With the exponential growth of super apps’ users, such as WeChat,

Alipay, and other app-carrying manufacturers, miniapps have gar-

nered a substantial user base, leading to the accumulation of users’

privacy information. According to relevant data, by the end of

2022, miniapps have exceeded 7.8 million, and DAU exceeded 800

million[11]. However, this rapid expansion has also exposed secu-

rity risks in data collection, deletion, and transmission processes,

primarily concerning data security issues[23].

The key parties responsible for miniapp information collection

and utilization include the first and third parties. The first party,

referring to the miniapp developers, collects and utilizes informa-

tion with user consent to fulfill its functional requirements. And

the third-party encompasses the third-party SDKs used in miniapp,

such as AutoNavi SDK and advertising libraries. These third-party

SDKs can share user’s sensitive information with the first party

while providing their services. Presently, numerous third-party re-

source databases, including CDNJS, Baidu Cloud, Alibaba Cloud,

etc., cover diverse types of third-party databases, such as adver-

tising, statistical analysis, maps, and payment services. However,

ensuring the security of these third-party libraries presents a chal-

lenge, as they may harbor security vulnerabilities, such as plaintext

transmission.

Meanwhile, there is no work that investigates the third-party

libraries of miniapps yet. Therefore, in this paper, we propose a

JSLibD method for automated detection and matching of third-

party libraries for miniapps. Specifically, our method consists of

three steps.

This paper conducts a manual analysis of 635 miniapps with

privacy policies across seven platforms, including Baidu, Tiktok, JD,

Taobao, Toutiao, WeChat, and Alipay. Among these, 310 miniapps

employ third-party libraries, accounting for 8.8% of the total. In

total, 972 third-party libraries are utilized, with an average of 1.53

third-party libraries being used per miniapp, while the Suning.com

miniapp use up to 14 third-party libraries. Additionally, the study

collects 24 commonly used third-party libraries for miniapps as

shown is Table 1, yet ensuring the security of these third-party

libraries proves challenging. A significant majority of these libraries

lack security auditing, and many code segments contain security

vulnerabilities, such as plaintext transmission, posing substantial

challenges to the security of miniapps. Furthermore, in the vast

majority of miniapps, locating privacy policy protection agreements

for third-party libraries is difficult or impossible. Moreover, some

third-party platforms may collect user application information,

11

https://doi.org/10.1145/3605762.3624428
https://doi.org/10.1145/3605762.3624428

SaTS 2023, November 26, 2023, Copenhagen, Denmark Junjie Tao et al.

account details, and device data without obtaining user consent,

leading to uncontrollable privacy threats for both developers and

application users.

Table 1: List of commonly used third-party libraries for
miniapps

Number

Third-party Library

Name

Third-party Library Description

1 Taro-ui Taro UI Component

2 MD5.js Encryption

3 Aes.js Encryption

4 Qrcode.js Generate QR Code

5 Base64.js Base64 Encoding and Decoding

6 City.js Provincial and Municipal Plugin

7 Mtj-wx-sdk.js Accessing Baidu Statistics

8 Ald-stat.js Aladdin Data Statistics

9 We-cropper.js WeChat Image Cropping Tool

10 Wxcharts.js Tencent Chart Service

11 Qqmap-wx-jssdk Tencent Location Services

12 Amap-wx.js Gaode Location Service

13 QiniuUploader Qiniuyun Upload SDK

14 Common.js Modular Canonical Function Set

15 Sha1.js SHA-1 Encryption Algorithm

16 Moment.min.js Date Processing Class Library

17 Weui WeUI Component Library

18 Uni-ui Cross-end UI Library of DCloud

19 Weapp Lightweight UI Component

20 Colorui Highly Attractive Miniapp

21 WxParse WeChat Rich Text Parsing

22 Bmap-wx.min.js Baidu Maps Service Interface

23 Verify_mpsdk Tencent Cloud Facial SDK

24 Wepy Wepy Development Framework

Firstly, the wxapkg file is decompiled into source codes. After

that, the source codes will be parsed into AST structure. The second

step is to extract features from these ASTs, and the function call

graph (FCG) and file dependency graph (FDG) will be generated.

Finally, the whitelist matching method will use the FCG to match

the known libraries and the heuristic prediction method, based on

FDG and the invoking rules, will be executed for the unmatched

files to find the unknown libraries.

In summary, we make the following contributions:

• We collect a third-party library whitelist for miniapp, encom-

passing 852 commonly used third-party libraries, totaling

18,516 files.

• We are the first to introduce a heuristic third-party library

extraction method, based on extensive measurement and ob-

servation of function call relationships in numerous miniapp

samples, yielding three types of invoking rules for miniapps.

• We implement a prototype tool for third-party library ex-

traction named JSLibD, integrating both whitelist matching

and heuristic prediction. In a manually labeled dataset, this

method achieves an precision of 85.9% and a recall rate of

97.2%.

2 BACKGROUND
2.1 Miniapp Reverse
Miniapp code consists of four types of files: JS logic files, WXML

page files, WXSS style files, and JSON configuration files. Upon

uploading, miniapps are packaged into a wxapkg file, akin to a

compressed archive. Leveraging an offline package and web ap-

proach, users download the packaged wxapkg file (usually under

2MB) when accessing a miniapp, ensuring rapid and efficient usage.

For extracting third-party libraries from a miniapp, the starting

point is the source code comprising the aforementioned four file

types. In this paper, we use the wxappUnpacker, an open source

reverse tool, to extract Wechat miniapp source code.

2.2 Third-Party Libraries
Third-party libraries for miniapps are written in JavaScript and

are hosted on platforms such as CDNJS, Baidu Cloud, Qiniu Cloud,

and GitHub. These libraries enhance development efficiency when

integrated by program developers. Due to the characteristics of

miniapps, third-party libraries can be categorized as either single-

file or multi-file libraries. Single-file libraries, like Baidu Map Ser-

vices (bmap-wx.min.js) and Aladdin Data Statistics (ald-stat.js),

consist of a single JS file. Multi-file libraries, on the other hand,

comprise multiple JS files that are often organized within a specific

directory structure. Notable examples include wxParse for rich text

parsing and Tencent Cloud Face Recognition SDK verify_mpsdk.

3 METHOD
The workflow of JSLibD is shown in Figure 1. The JSLibD sys-

tem takes wxapkg files as the input. Initially, the wxapkg file is

decompiled into source codes using the wxappUnpacker tool. After

that, the source codes will be parsed into AST structure using the

esprima tool. After the feature extracting steps, the function call

graph (FCG) and file dependency graph (FDG) will be generated.

Then, the whitelist matching method will use the FCG to match

the known libraries and the heuristic prediction method, based on

FDG and the invoking rules, will be executed for the unmatched

files to find the unknown libraries.

3.1 Whitelist Matching Method
The whitelist matching method operates on files that have under-

gone the feature extraction. For each file, Potential Known Libraries

(PKL) will be selected through comparing the size of FCGs. Subse-

quently, employing graph similarity measurement between files

and its PKLs, each file will be ascertained whether it is a known

library.

To get the whitelist, this paper utilizes two distinct methods.

Firstly, we crawls suitable JavaScript libraries for miniapps from

various third-party static resource hosting platforms. Secondly, we

employs a large-scale clustering approach [14, 16, 25] to extract

frequently used third-party libraries from a dataset comprising over

100,000 miniapps.

12

JSLibD: Reliable and Heuristic Detection of Third-party Libraries in Miniapps SaTS 2023, November 26, 2023, Copenhagen, Denmark

Figure 1: JSLibD Detection Workflow

3.2 Heuristic Prediction Method
Based on extensive measurements and observations of function call

relationships in numerous miniapp samples, this paper identifies

three types of invoking rules:

• Non-library files calling other non-library files.

• Non-library files calling library files.

• Library files calling other library files, where both the caller

and callee belong to the same library type.

An example shown in Figure 4 is given to visualize these rules.

There are three colorful calling relationships in the example comply-

ing with the invoking rules above. Specifically, the red relationship

which represents pages.js calling utils.js follows the first rule. And

the green relationship concurs with the second rule, while the

yellow relationship aligns seamlessly with the third rule.

Based on these invoking rules, this paper proposed an innovative

heuristic prediction method for third-party library extraction. The

method introduces the concept of "intimacy" to measure the level

of coupling between a JS file and the entire miniapp.

Definition 1. intimacy: It is used to measure the degree of cou-
pling between a JS file and the entire miniapp. JS files with high
intimacy are code files written by miniapp developers themselves.

Theoretically, by traversing the FDG, once nodes with exces-

sively high intimacy are identified, all parent nodes can be consid-

ered as non-library file nodes, given that the invoking rules indicate

that library files cannot invoke non-library files. Subsequently, af-

ter filtering out the non-library file nodes, the method clusters the

left files belonging to the same library type using the third rule.

Ultimately, the method outputs the unknown libraries within the

miniapp.

To filter JS files authored by miniapp developers, this paper

employs several methods to measure intimacy. For example, we can

extract the function call graph at the miniapp level, where nodes

with high coupling (e.g., the blue nodes in Figure 2 representing

utility nodes within utils authored by miniapp developers, which

have the same feature with libraries in the code level) become the

target nodes for the first extraction method.

Furthermore, we can extract the APIs called by the JS files, then

calculate the total weight based on preassigned weights for each

API, and consider a node to have excessively high intimacy if its

Figure 2: Miniapp Global Function Call Graph

total weight exceeds the threshold. The extracted APIs mainly in-

clude page navigation, routing, and page interaction APIs, which

are typically not used by third-party libraries. Detailed information

on the extracted APIs is provided in Table 2.

4 EXPERIMENTAL RESULTS
We collected 839 third-party libraries totaling 18,277 files to test the

performance of the whitelist matching method. And the overall de-

tection performance of JSLibD was tested by 35 WeChat miniapps

with manually calibrated data. Finally, the case of FinLove miniapp

is used to illustrate the anti confusion ability of the detection tool.

13

SaTS 2023, November 26, 2023, Copenhagen, Denmark Junjie Tao et al.

Table 2: API Information

Number API Weight

1 wx.switchTab 2

2 wx.reLaunch 2

3 wx.redirectTo 2

4 wx.navigateTo 2

5 wx.navigateBack 2

6 wx.showToast 1

7 wx.switchModal 1

8 wx.showLoading 1

9 wx.showActionSheet 1

4.1 WhiteList Fast Matching Method Results
To determine the optimal threshold for the proposed method, we

selected 1,147 third-party library files and measured their similarity

with files from different versions. Furthermore, random files from

other libraries were selected and calculated their similarity with

the above 1147 files.

(a) Scatter plot (b) P-R curve

Figure 3: Scatter plot and P-R curves of 1147 third-party li-
brary similarity measurement results

The results presented in Figure 3a illustrate the average simi-

larity scores between different versions of the same library (green

nodes) and between different libraries (red nodes). As observed

from the plot, the similarity between files from the same library

predominantly exceeds 0.4, while the similarity between files from

different libraries mostly falls below 0.4. In addition, for matching

methods, higher precision and recall are desirable, as depicted in

the precision-recall (P-R) curve shown in Figure 3b, where the up-

per left corner represents the optimal performance. Therefore, we

selected the threshold corresponding to the convex point of the P-R

curve [21].

Furthermore, a total of 360 libraries with 5,967 files were se-

lected for evaluating the performance. Subsequently, 100 JS file

samples were chosen, with 50 samples present in the 5,967 files

and the remaining 50 samples absent. The experimental results

demonstrate that each sample file requires an average search of

22.69 third-party libraries and 68.07 files to obtain matching results,

effectively achieving fast matching performance. In addition, the

results indicate that out of the 100 samples, only one sample was

falsely identified as a known library, resulting in an impressive

accuracy of 99%.

4.2 Performance of Detection
The overall detection performance of the tool was assessed by

combining the tool’s results with manual analysis of 35 WeChat

miniapps, comprising a total of 5,556 files. The results are summa-

rized in Table 3. We used the confusion matrix method to evaluate

the results and the performance yielded 588 true positive files, 96

false positive files, and 17 false negative files, which indicates JS-
LibD have an precision of 85.9% and a recall rate of 97.2%.

Figure 4: Code structure of FinLove miniapp

4.3 Cases of Anti Confusion Ability
To verify the actual effectiveness of JSLibD, we selected the FinLove
miniapp for analysis and testing. Its code structure is shown in

Figure 4. It can be found that the miniapp consists of page files and

some configuration files, which are non third-party libraries, as

well as MD5 files and wxParse files, which are third-party libraries.

After manual analysis, the corresponding situation of the third-

party library source files and their confusion version in the miniapp

is shown in the Table 4, where ‘\’ indicates that the file is a non

third-party library and ‘✓’ indicates that the tool is able to detect

obfuscated third-party library files.

From Table 4, it can be seen that all third-party library files

within the FinLove miniapp were successfully obtained, which

indicate that JSLibD can effectively extract third-party libraries for

miniapps and has certain anti confusion ability.

5 DISCUSSION
This paper acknowledges certain limitations of JSLibDwhile propos-

ing potential solutions:

Limited Detection of Front-end UI Libraries. JSLibD focuses

solely on detecting back-end JavaScript logic code libraries and

does not account for front-end UI libraries. As third-party libraries

may introduce security risks due to the lack of security auditing,

JSLibD’s main goal is to produce outputs that can be utilized by

other privacy and security analysis tools to assess library security

risks comprehensively. However, front-end UI libraries typically

do not involve sensitive data, leading to their exclusion during the

initial design of JSLibD. Future research could involve a detailed

analysis of front-end UI libraries to incorporate a separate module

within JSLibD, specifically designed to detect and analyze them.

14

JSLibD: Reliable and Heuristic Detection of Third-party Libraries in Miniapps SaTS 2023, November 26, 2023, Copenhagen, Denmark

Table 3: Overall Tool Detection Performance

Miniapp name TP TN FP FN

CMC Cinema 6 123 1 0

Instabolt flash charge 0 25 1 0

OIAM plays big names 0 6 0 0

Mom and Dad camp good things 0 478 0 0

Class Gang 24 284 1 0

Play with you 2 139 0 0

Check out the QR code 126 384 5 2

Wheel driver’s license pass 3 126 0 0

The car has material 4 145 0 0

Do not disturb 9 6 1 0

Hi repair mobile phone platform 10 90 1 1

Dada exclusively 23 179 7 0

State Department client 36 615 0 0

Wanting to fall in love 6 73 1 0

Mango TV video 0 51 0 0

Qiaqia Food Lite 0 442 0 0

QQ Music 1 62 2 0

Networking business cards 5 34 0 0

Oil price map 2 25 0 0

Suning.com 41 525 4 0

Play card OneWeek 20 98 9 0

Little Red Book APP 49 116 6 3

Chengdu court service platform 1 18 0 0

Automatically generate sheets 15 129 1 0

GitHub applets 2 13 3 0

pModify the map 21 22 0 2

Aika Cars 6 31 0 0

U guest cloud 11 69 2 0

Lucky little weather 0 3 4 0

Baby Bus Kids Bedtime Story 42 56 23 0

Open volume audio subscription 6 61 1 0

Yuanzhou decoration store 81 317 11 8

Love Xianyang 1 45 2 0

Xi’an Policy Pass 19 9 5 0

High-tech office 16 56 5 1

Dependency Graph Reliance on Path Information. The
process of generating the file dependency graph heavily relies on

path information, which may become erroneous when decompiling

project source code from wxapkg files. A complete and accurate file

dependency graph is essential for the Heuristic Prediction Method,

as any missing dependencies can lead to numerous false positives.

To address this issue, two potential solutions are proposed: Firstly,

the development of a custom decompilation tool that ensures the

accuracy of path information during the decompilation process,

ensuring reliable file dependency graphs. Secondly, a modification

of the current method employed by JSLibD to generate file de-

pendency graphs, making it less sensitive to path information and

capable of producing complete and accurate dependency graphs.

The feasibility and effectiveness of these approaches require further

investigation.

6 RELATEDWORK
Static Analysis of Super Apps.One method that cannot be sep-

arated from the analysis of miniapps is the static analysis tech-

nology for super apps, which involves analyzing the source code

without executing it. Static analysis was widely used to find secu-

rity and privacy issues[13]. For example, some approaches were

developed based on static analysis techniques to detect privacy

leaks[1, 8, 12, 18, 19, 24] and detect malicious code[4, 6, 7, 9, 20].

Third-party Library Detection of Miniapps. The existing

research on third-party library detection and extraction methods

has predominantly focused on Android apps, leaving a notable gap

in the context of miniapps. In the domain of Android apps, two

primary streams of approaches for detecting third-party libraries

can be identified.

The first approach entails constructing a whitelist of known

libraries and subsequently performing similarity matching. Chen

et al.[5] compiled a collection of 73 commonly used third-party

libraries to detect cloned apps. Similarly, Grace et al.[10] and Book

et al.[3] curated lists of commonly used advertising libraries and

employed package name matching to detect third-party libraries in

app programs. To improve resistance to obfuscation, many detection

tools generate robust feature values for the known libraries and

then utilize feature matching or similarity comparison methods

to identify third-party libraries. For instance, LibRadar[16] and

Wukong [22] extracted system-level APIs from each library to serve

as feature values. Despite exhibiting a certain level of obfuscation

resistance and enhancing detection robustness, these methods still

suffer from a critical drawback of being unable to identify third-

party libraries not included in the whitelist.

The second approach is based on machine learning techniques

and can be divided into two categories. The first category involves

feature-based classification methods. Tools like PeDal [15] and Ad-

Detect [17] extract permission and API features to train classifiers

capable of distinguishing advertising libraries from non-advertising

libraries. Additionally, there are clustering-based third-party library

detection tools, including LibRadar[16], LibD [14], and LibExtractor

[25]. These tools utilize large-scale app datasets, often comprising

millions of apps, to group third-party libraries with similar features

together and then apply a defined threshold to determine their

status as third-party libraries. However, some of these clustering

methods will use large-scale Apps as input to generate enough fea-

ture signatures, while others will discover incomplete third-party

libraries. Moreover, the package names or structures that rely on

clustering methods are easily confused by existing obfuscators[2].

7 CONCLUSION
This paper successfully designed and implemented JSLibD, a robust
third-party library extraction method for miniapps. Comprising

the WhiteList Fast Matching Method and the Heuristic Prediction

Method, JSLibD provides an effective solution for identifying third-

party libraries within miniapps. The evaluation of JSLibD was

carried out on 35 WeChat miniapps, encompassing a total of 5,556

files, and the results showed JSLibD have an precision of 85.9% and

a recall rate of 97.2%.

15

SaTS 2023, November 26, 2023, Copenhagen, Denmark Junjie Tao et al.

Table 4: The file connection and tool detection of third-party library source files and code confusion

Miniapp Category Miniapp Code File Library Source File Detection Result

Pages File \ \ \

Utils and Configs \ \ \

MD5 Library OAFDED1185C4F1DE6C9B85166B2B3782.js MD5.js ✓

wxParse Library

wxParse.js wxParse.is ✓
E9B9EF8285C4F1DF8FDF87859F0B3782.js wxDiscode.is ✓
D261394285C4F1DEB4075145CC1B3782.js showDown.js ✓
C91EB0B585C4F1DEAF79D8B2610B3782.js htmlParser.js ✓
4278396785C4E1DE241E516010EA3782.js html2json.js ✓

ACKNOWLEDGEMENTS
This work was supported by National Key R&D Program of China

(2022YFB2703500), National Natural Science Foundation of China

(62232014, 62272377, 62293501, 62293502, 72241433, 61721002,

62032010, 62002280), CCF-AFSGResearch Fund , China Postdoctoral

Science Foundation (2020M683507, 2019TQ0251, 2020M673439), and

Young Talent Fund of Association for Science and Technology in

Shaanxi, China.

REFERENCES
[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.

Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.
[2] Arini Balakrishnan and Chloe Schulze. 2005. Code obfuscation literature survey.

CS701 Construction of compilers 19 (2005), 31.
[3] Theodore Book, Adam Pridgen, and Dan S Wallach. 2013. Longitudinal analysis

of android ad library permissions. arXiv preprint arXiv:1303.0857 (2013).

[4] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song, and

Heng Yin. 2008. Automatically identifying trigger-based behavior in malware.

Botnet Detection: Countering the Largest Security Threat (2008), 65–88.
[5] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving accuracy and scalability

simultaneously in detecting application clones on android markets. In Proceedings
of the 36th International Conference on Software Engineering. 175–186.

[6] Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua Zheng, and

Ting Liu. 2018. Android malware familial classification and representative sam-

ple selection via frequent subgraph analysis. IEEE Transactions on Information
Forensics and Security 13, 8 (2018), 1890–1905.

[7] Ming Fan, Xiapu Luo, Jun Liu, Meng Wang, Chunyin Nong, Qinghua Zheng, and

Ting Liu. 2019. Graph embedding based familial analysis of android malware

using unsupervised learning. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 771–782.

[8] Ming Fan, Le Yu, Sen Chen, Hao Zhou, Xiapu Luo, Shuyue Li, Yang Liu, Jun Liu,

and Ting Liu. 2020. An empirical evaluation of GDPR compliance violations in

Android mHealth apps. In 2020 IEEE 31st international symposium on software
reliability engineering (ISSRE). IEEE, 253–264.

[9] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christo-

pher Kruegel, and Giovanni Vigna. 2016. Triggerscope: Towards detecting logic

bombs in android applications. In 2016 IEEE symposium on security and privacy
(SP). IEEE, 377–396.

[10] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. 2012. Unsafe

exposure analysis of mobile in-app advertisements. In Proceedings of the fifth
ACM conference on Security and Privacy inWireless and Mobile Networks. 101–112.

[11] Aladdin Institute. 2023. 2022 White Paper on the Internet Development of

Miniapps. [Online]. https://www.aldzs.com/viewpointarticle?id=16573/ Last

accessed on 2023-08-09.

[12] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,

Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-

Daniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps. In

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 280–291.

[13] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre

Bartel, Damien Octeau, Jacques Klein, and Le Traon. 2017. Static analysis of

android apps: A systematic literature review. Information and Software Technology
88 (2017), 67–95.

[14] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue,

and Wei Huo. 2017. Libd: Scalable and precise third-party library detection in

android markets. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 335–346.

[15] Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan. 2015. Efficient privilege

de-escalation for ad libraries in mobile apps. In Proceedings of the 13th annual
international conference on mobile systems, applications, and services. 89–103.

[16] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. Libradar: Fast and

accurate detection of third-party libraries in android apps. In Proceedings of the
38th international conference on software engineering companion. 653–656.

[17] Annamalai Narayanan, Lihui Chen, and Chee Keong Chan. 2014. Addetect:

Automated detection of android ad libraries using semantic analysis. In 2014
IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP). IEEE, 1–6.

[18] Jordan Samhi, Alexandre Bartel, Tegawendé F Bissyandé, and Jacques Klein. 2021.

Raicc: Revealing atypical inter-component communication in android apps. In

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 1398–1409.

[19] Jordan Samhi, Jun Gao, Nadia Daoudi, Pierre Graux, Henri Hoyez, Xiaoyu Sun,

Kevin Allix, Tegawendé F Bissyandé, and Jacques Klein. 2022. Jucify: A step

towards android code unification for enhanced static analysis. In Proceedings of
the 44th International Conference on Software Engineering. 1232–1244.

[20] Jordan Samhi, Li Li, Tegawendé F Bissyandé, and Jacques Klein. 2022. Difuzer:

Uncovering suspicious hidden sensitive operations in android apps. In Proceedings
of the 44th International Conference on Software Engineering. 723–735.

[21] Helen R Sofaer, Jennifer A Hoeting, and Catherine S Jarnevich. 2019. The area

under the precision-recall curve as a performance metric for rare binary events.

Methods in Ecology and Evolution 10, 4 (2019), 565–577.

[22] HaoyuWang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2015. Wukong: A scalable

and accurate two-phase approach to android app clone detection. In Proceedings
of the 2015 International Symposium on Software Testing and Analysis. 71–82.

[23] Yin Wang, Ming Fan, Junfeng Liu, Junjie Tao, Wuxia Jin, Qi Xiong, Yuhao Liu,

Qinghua Zheng, and Ting Liu. 2023. Do as You Say: Consistency Detection of

Data Practice in Program Code and Privacy Policy in Mini-App. arXiv preprint
arXiv:2302.13860 (2023).

[24] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2018. Amandroid: A

precise and general inter-component data flow analysis framework for security

vetting of android apps. ACM Transactions on Privacy and Security (TOPS) 21, 3
(2018), 1–32.

[25] Zicheng Zhang, Wenrui Diao, Chengyu Hu, Shanqing Guo, Chaoshun Zuo, and

Li Li. 2020. An empirical study of potentially malicious third-party libraries in

android apps. In Proceedings of the 13th ACM Conference on Security and Privacy
in Wireless and Mobile Networks. 144–154.

16

https://www.aldzs.com/viewpointarticle?id=16573/

	Abstract
	1 Introduction
	2 Background
	2.1 Miniapp Reverse
	2.2 Third-Party Libraries

	3 Method
	3.1 Whitelist Matching Method
	3.2 Heuristic Prediction Method

	4 Experimental Results
	4.1 WhiteList Fast Matching Method Results
	4.2 Performance of Detection
	4.3 Cases of Anti Confusion Ability

	5 Discussion
	6 Related Work
	7 Conclusion
	References

